hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_lapack_ztrsyl (f08qv)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_lapack_ztrsyl (f08qv) solves the complex triangular Sylvester matrix equation.

Syntax

[c, scal, info] = f08qv(trana, tranb, isgn, a, b, c, 'm', m, 'n', n)
[c, scal, info] = nag_lapack_ztrsyl(trana, tranb, isgn, a, b, c, 'm', m, 'n', n)

Description

nag_lapack_ztrsyl (f08qv) solves the complex Sylvester matrix equation
opAX ± XopB = αC ,  
where opA = A  or AH, and the matrices A and B are upper triangular; α is a scale factor (1) determined by the function to avoid overflow in X; A is m by m and B is n by n while the right-hand side matrix C and the solution matrix X are both m by n. The matrix X is obtained by a straightforward process of back-substitution (see Golub and Van Loan (1996)).
Note that the equation has a unique solution if and only if αi±βj0, where αi and βj are the eigenvalues of A and B respectively and the sign (+ or -) is the same as that used in the equation to be solved.

References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore
Higham N J (1992) Perturbation theory and backward error for AX-XB=C Numerical Analysis Report University of Manchester

Parameters

Compulsory Input Parameters

1:     trana – string (length ≥ 1)
Specifies the option opA.
trana='N'
opA=A.
trana='C'
opA=AH.
Constraint: trana='N' or 'C'.
2:     tranb – string (length ≥ 1)
Specifies the option opB.
tranb='N'
opB=B.
tranb='C'
opB=BH.
Constraint: tranb='N' or 'C'.
3:     isgn int64int32nag_int scalar
Indicates the form of the Sylvester equation.
isgn=+1
The equation is of the form opAX+XopB=αC.
isgn=-1
The equation is of the form opAX-XopB=αC.
Constraint: isgn=+1 or -1.
4:     alda: – complex array
The first dimension of the array a must be at least max1,m.
The second dimension of the array a must be at least max1,m.
The m by m upper triangular matrix A.
5:     bldb: – complex array
The first dimension of the array b must be at least max1,n.
The second dimension of the array b must be at least max1,n.
The n by n upper triangular matrix B.
6:     cldc: – complex array
The first dimension of the array c must be at least max1,m.
The second dimension of the array c must be at least max1,n.
The m by n right-hand side matrix C.

Optional Input Parameters

1:     m int64int32nag_int scalar
Default: the first dimension of the array a and the second dimension of the array a. (An error is raised if these dimensions are not equal.)
m, the order of the matrix A, and the number of rows in the matrices X and C.
Constraint: m0.
2:     n int64int32nag_int scalar
Default: the first dimension of the array b and the second dimension of the array b. (An error is raised if these dimensions are not equal.)
n, the order of the matrix B, and the number of columns in the matrices X and C.
Constraint: n0.

Output Parameters

1:     cldc: – complex array
The first dimension of the array c will be max1,m.
The second dimension of the array c will be max1,n.
c stores the solution matrix X.
2:     scal – double scalar
The value of the scale factor α.
3:     info int64int32nag_int scalar
info=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Cases prefixed with W are classified as warnings and do not generate an error of type NAG:error_n. See nag_issue_warnings.

   info=-i
If info=-i, parameter i had an illegal value on entry. The parameters are numbered as follows:
1: trana, 2: tranb, 3: isgn, 4: m, 5: n, 6: a, 7: lda, 8: b, 9: ldb, 10: c, 11: ldc, 12: scal, 13: info.
It is possible that info refers to a parameter that is omitted from the MATLAB interface. This usually indicates that an error in one of the other input parameters has caused an incorrect value to be inferred.
W  info=1
A and B have common or close eigenvalues, perturbed values of which were used to solve the equation.

Accuracy

Consider the equation AX-XB=C. (To apply the remarks to the equation AX+XB=C, simply replace B by -B.)
Let X~ be the computed solution and R the residual matrix:
R = C - AX~ - X~B .  
Then the residual is always small:
RF = Oε AF + BF X~F .  
However, X~ is not necessarily the exact solution of a slightly perturbed equation; in other words, the solution is not backwards stable.
For the forward error, the following bound holds:
X~ - X F RF sep A,B  
but this may be a considerable over estimate. See Golub and Van Loan (1996) for a definition of sepA,B, and Higham (1992) for further details.
These remarks also apply to the solution of a general Sylvester equation, as described in Further Comments.

Further Comments

The total number of real floating-point operations is approximately 4mnm+n.
To solve the general complex Sylvester equation
AX ± XB = C  
where A and B are general matrices, A and B must first be reduced to Schur form (by calling nag_lapack_zgees (f08pn), for example):
A = Q1 A~ Q1H   and   B = Q2 B~ Q2H  
where A~ and B~ are upper triangular and Q1 and Q2 are unitary. The original equation may then be transformed to:
A~ X~ ± X~ B~ = C~  
where X~ = Q1H X Q2  and C~ = Q1H C Q2 . C~ may be computed by matrix multiplication; nag_lapack_ztrsyl (f08qv) may be used to solve the transformed equation; and the solution to the original equation can be obtained as X = Q1 X~ Q2H .
The real analogue of this function is nag_lapack_dtrsyl (f08qh).

Example

This example solves the Sylvester equation AX+XB=C, where
A = -6.00-7.00i 0.36-0.36i -0.19+0.48i 0.88-0.25i 0.00+0.00i -5.00+2.00i -0.03-0.72i -0.23+0.13i 0.00+0.00i 0.00+0.00i 8.00-1.00i 0.94+0.53i 0.00+0.00i 0.00+0.00i 0.00+0.00i 3.00-4.00i ,  
B = 0.50-0.20i -0.29-0.16i -0.37+0.84i -0.55+0.73i 0.00+0.00i -0.40+0.90i 0.06+0.22i -0.43+0.17i 0.00+0.00i 0.00+0.00i -0.90-0.10i -0.89-0.42i 0.00+0.00i 0.00+0.00i 0.00+0.00i 0.30-0.70i  
and
C = 0.63+0.35i 0.45-0.56i 0.08-0.14i -0.17-0.23i -0.17+0.09i -0.07-0.31i 0.27-0.54i 0.35+1.21i -0.93-0.44i -0.33-0.35i 0.41-0.03i 0.57+0.84i 0.54+0.25i -0.62-0.05i -0.52-0.13i 0.11-0.08i .  
function f08qv_example


fprintf('f08qv example results\n\n');

% Quasi-triangular (Schur form) matrices A and B, and general matrix C 
a = [-6    - 7i,     0.36 - 0.36i, -0.19 + 0.48i,  0.88 - 0.25i;
      0    + 0i,    -5    + 2i,    -0.03 - 0.72i, -0.23 + 0.13i;
      0    + 0i,     0    + 0i,     8    - 1i,     0.94 + 0.53i;
      0    + 0i,     0    + 0i,     0    + 0i,     3    - 4i];
b = [ 0.5  - 0.2i,  -0.29 - 0.16i, -0.37 + 0.84i, -0.55 + 0.73i;
      0    + 0i,    -0.4  + 0.9i,   0.06 + 0.22i, -0.43 + 0.17i;
      0    + 0i,     0    + 0i,    -0.90 - 0.10i, -0.89 - 0.42i;
      0    + 0i,     0    + 0i,     0    + 0i,     0.30 - 0.7i];
c = [ 0.63 + 0.35i,  0.45 - 0.56i,  0.08 - 0.14i, -0.17 - 0.23i;
     -0.17 + 0.09i, -0.07 - 0.31i,  0.27 - 0.54i,  0.35 + 1.21i;
     -0.93 - 0.44i, -0.33 - 0.35i,  0.41 - 0.03i,  0.57 + 0.84i;
      0.54 + 0.25i, -0.62 - 0.05i, -0.52 - 0.13i,  0.11 - 0.08i];

% Solve Sylvester equation AX + XB = C for X
trana = 'No transpose';
tranb = 'No transpose';
isgn = int64(1);
[X, scal, info] = f08qv( ...
			 trana, tranb, isgn, a, b, c);

disp('Solution matrix');
disp(X);


f08qv example results

Solution matrix
  -0.0611 + 0.0249i  -0.0031 + 0.0798i  -0.0062 + 0.0165i   0.0054 - 0.0063i
   0.0215 - 0.0003i  -0.0155 + 0.0570i  -0.0665 + 0.0718i   0.0290 - 0.2636i
  -0.0949 - 0.0785i  -0.0415 - 0.0298i   0.0357 + 0.0244i   0.0284 + 0.1108i
   0.0281 + 0.1052i  -0.0970 - 0.1214i  -0.0271 - 0.0940i   0.0402 + 0.0048i


PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015