hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_lapack_dspevd (f08gc)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_lapack_dspevd (f08gc) computes all the eigenvalues and, optionally, all the eigenvectors of a real symmetric matrix held in packed storage. If the eigenvectors are requested, then it uses a divide-and-conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal–Walker–Kahan variant of the QL or QR algorithm.

Syntax

[ap, w, z, info] = f08gc(job, uplo, n, ap)
[ap, w, z, info] = nag_lapack_dspevd(job, uplo, n, ap)

Description

nag_lapack_dspevd (f08gc) computes all the eigenvalues and, optionally, all the eigenvectors of a real symmetric matrix A (held in packed storage). In other words, it can compute the spectral factorization of A as
A=ZΛZT,  
where Λ is a diagonal matrix whose diagonal elements are the eigenvalues λi, and Z is the orthogonal matrix whose columns are the eigenvectors zi. Thus
Azi=λizi,  i=1,2,,n.  

References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

Parameters

Compulsory Input Parameters

1:     job – string (length ≥ 1)
Indicates whether eigenvectors are computed.
job='N'
Only eigenvalues are computed.
job='V'
Eigenvalues and eigenvectors are computed.
Constraint: job='N' or 'V'.
2:     uplo – string (length ≥ 1)
Indicates whether the upper or lower triangular part of A is stored.
uplo='U'
The upper triangular part of A is stored.
uplo='L'
The lower triangular part of A is stored.
Constraint: uplo='U' or 'L'.
3:     n int64int32nag_int scalar
n, the order of the matrix A.
Constraint: n0.
4:     ap: – double array
The dimension of the array ap must be at least max1,n×n+1/2
The upper or lower triangle of the n by n symmetric matrix A, packed by columns.
More precisely,
  • if uplo='U', the upper triangle of A must be stored with element Aij in api+jj-1/2 for ij;
  • if uplo='L', the lower triangle of A must be stored with element Aij in api+2n-jj-1/2 for ij.

Optional Input Parameters

None.

Output Parameters

1:     ap: – double array
The dimension of the array ap will be max1,n×n+1/2
ap stores the values generated during the reduction to tridiagonal form. The elements of the diagonal and the off-diagonal of the tridiagonal matrix overwrite the corresponding elements of A.
2:     w: – double array
The dimension of the array w will be max1,n
The eigenvalues of the matrix A in ascending order.
3:     zldz: – double array
The first dimension, ldz, of the array z will be
  • if job='V', ldz= max1,n ;
  • if job='N', ldz=1.
The second dimension of the array z will be max1,n if job='V' and at least 1 if job='N'.
If job='V', z stores the orthogonal matrix Z which contains the eigenvectors of A.
If job='N', z is not referenced.
4:     info int64int32nag_int scalar
info=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

   info=-i
If info=-i, parameter i had an illegal value on entry. The parameters are numbered as follows:
1: job, 2: uplo, 3: n, 4: ap, 5: w, 6: z, 7: ldz, 8: work, 9: lwork, 10: iwork, 11: liwork, 12: info.
It is possible that info refers to a parameter that is omitted from the MATLAB interface. This usually indicates that an error in one of the other input parameters has caused an incorrect value to be inferred.
   info>0
if info=i and job='N', the algorithm failed to converge; i elements of an intermediate tridiagonal form did not converge to zero; if info=i and job='V', then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and column i/n+1 through i mod n+1.

Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix A+E, where
E2 = Oε A2 ,  
and ε is the machine precision. See Section 4.7 of Anderson et al. (1999) for further details.

Further Comments

The complex analogue of this function is nag_lapack_zhpevd (f08gq).

Example

This example computes all the eigenvalues and eigenvectors of the symmetric matrix A, where
A = 1.0 2.0 3.0 4.0 2.0 2.0 3.0 4.0 3.0 3.0 3.0 4.0 4.0 4.0 4.0 4.0 .  
function f08gc_example


fprintf('f08gc example results\n\n');

% A is symmetric matrix stored in symmetric (Lower) packed format
uplo = 'L';
n = int64(4);
ap = [1;     2;     3;     4;
             2;     3;     4;
                    3;     4;
                           4];

% Eigenvalues and vectors of A 
job = 'Vectors';
[apf, w, z, info] = f08gc( ...
                           job, uplo, n, ap);

disp('Eigenvalues');
disp(w');

% Normalize eigenvectors: largest element positive
for j = 1:n
  [~,k] = max(abs(z(:,j)));
  if z(k,j) < 0;
    z(:,j) = -z(:,j);
  end
end                            

disp('Eigenvectors');
disp(z);


f08gc example results

Eigenvalues
   -2.0531   -0.5146   -0.2943   12.8621

Eigenvectors
    0.7003   -0.5144   -0.2767    0.4103
    0.3592    0.4851    0.6634    0.4422
   -0.1569    0.5420   -0.6504    0.5085
   -0.5965   -0.4543    0.2457    0.6144


PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015