hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_linsys_real_posdef_solve_1rhs (f04as)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_linsys_real_posdef_solve_1rhs (f04as) calculates the accurate solution of a set of real symmetric positive definite linear equations with a single right-hand side, Ax=b, using a Cholesky factorization and iterative refinement.

Syntax

[a, c, ifail] = f04as(a, b, 'n', n)
[a, c, ifail] = nag_linsys_real_posdef_solve_1rhs(a, b, 'n', n)

Description

Given a set of real linear equations Ax=b, where A is a symmetric positive definite matrix, nag_linsys_real_posdef_solve_1rhs (f04as) first computes a Cholesky factorization of A as A=LLT where L is lower triangular. An approximation to x is found by forward and backward substitution. The residual vector r=b-Ax is then calculated using additional precision and a correction d to x is found by solving LLTd=r. x is then replaced by x+d, and this iterative refinement of the solution is repeated until machine accuracy is obtained.

References

Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra Springer–Verlag

Parameters

Compulsory Input Parameters

1:     alda: – double array
The first dimension of the array a must be at least max1,n.
The second dimension of the array a must be at least max1,n.
The upper triangle of the n by n positive definite symmetric matrix A. The elements of the array below the diagonal need not be set.
2:     bmax1,n – double array
The dimension of the array b must be at least max1,n
The right-hand side vector b.

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the first dimension of the array a and the second dimension of the arrays a, b.
n, the order of the matrix A.
Constraint: n0.

Output Parameters

1:     alda: – double array
The first dimension of the array a will be max1,n.
The second dimension of the array a will be max1,n.
The elements of the array below the diagonal are overwritten; the upper triangle of a is unchanged.
2:     cmax1,n – double array
The solution vector x.
3:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:
   ifail=1
The matrix A is not positive definite, possibly due to rounding errors.
   ifail=2
Iterative refinement fails to improve the solution, i.e., the matrix A is too ill-conditioned.
   ifail=3
On entry,n<0,
orlda<max1,n.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

The computed solutions should be correct to full machine accuracy. For a detailed error analysis see page 39 of Wilkinson and Reinsch (1971).

Further Comments

The time taken by nag_linsys_real_posdef_solve_1rhs (f04as) is approximately proportional to n3.
The function must not be called with the same name for arguments b and c.

Example

This example solves the set of linear equations Ax=b where
A= 5 7 6 5 7 10 8 7 6 8 10 9 5 7 9 10   and  b= 23 32 33 31 .  
function f04as_example


fprintf('f04as example results\n\n');

% Accurate solution to Ax = b, for positive definite A
a = [5,  7,  6,  5;
     7, 10,  8,  7;
     6,  8, 10,  9;
     5,  7,  9, 10];
b = [23;
     32;
     33;
     31];

[afac, x, ifail] = f04as(a, b);

disp('Solution');
disp(x);


f04as example results

Solution
     1
     1
     1
     1


PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015