hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_matop_complex_gen_matrix_fun_num (f01fl)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_matop_complex_gen_matrix_fun_num (f01fl) computes the matrix function, fA, of a complex n by n matrix A. Numerical differentiation is used to evaluate the derivatives of f when they are required.

Syntax

[a, user, iflag, ifail] = f01fl(a, f, 'n', n, 'user', user)
[a, user, iflag, ifail] = nag_matop_complex_gen_matrix_fun_num(a, f, 'n', n, 'user', user)

Description

fA is computed using the Schur–Parlett algorithm described in Higham (2008) and Davies and Higham (2003). The coefficients of the Taylor series used in the algorithm are evaluated using the numerical differentiation algorithm of Lyness and Moler (1967).
The scalar function f is supplied via function f which evaluates fzi at a number of points zi.

References

Davies P I and Higham N J (2003) A Schur–Parlett algorithm for computing matrix functions. SIAM J. Matrix Anal. Appl. 25(2) 464–485
Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA
Lyness J N and Moler C B (1967) Numerical differentiation of analytic functions SIAM J. Numer. Anal. 4(2) 202–210

Parameters

Compulsory Input Parameters

1:     alda: – complex array
The first dimension of the array a must be at least n.
The second dimension of the array a must be at least n.
The n by n matrix A.
2:     f – function handle or string containing name of m-file
The function f evaluates fzi at a number of points zi.
[iflag, fz, user] = f(iflag, nz, z, user)

Input Parameters

1:     iflag int64int32nag_int scalar
iflag will be zero.
2:     nz int64int32nag_int scalar
nz, the number of function values required.
3:     znz – complex array
The nz points z1,z2,,znz at which the function f is to be evaluated.
4:     user – Any MATLAB object
f is called from nag_matop_complex_gen_matrix_fun_num (f01fl) with the object supplied to nag_matop_complex_gen_matrix_fun_num (f01fl).

Output Parameters

1:     iflag int64int32nag_int scalar
iflag should either be unchanged from its entry value of zero, or may be set nonzero to indicate that there is a problem in evaluating the function fzi; for instance fzi may not be defined. If iflag is returned as nonzero then nag_matop_complex_gen_matrix_fun_num (f01fl) will terminate the computation, with ifail=2.
2:     fznz – complex array
The nz function values. fzi should return the value fzi, for i=1,2,,nz.
3:     user – Any MATLAB object

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the first dimension of the array a.
n, the order of the matrix A.
Constraint: n0.
2:     user – Any MATLAB object
user is not used by nag_matop_complex_gen_matrix_fun_num (f01fl), but is passed to f. Note that for large objects it may be more efficient to use a global variable which is accessible from the m-files than to use user.

Output Parameters

1:     alda: – complex array
The first dimension of the array a will be n.
The second dimension of the array a will be n.
The n by n matrix, fA.
2:     user – Any MATLAB object
3:     iflag int64int32nag_int scalar
iflag=0, unless iflag has been set nonzero inside f, in which case iflag will be the value set and ifail will be set to ifail=2.
4:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:
   ifail=1
A Taylor series failed to converge after 40 terms. Further Taylor series coefficients can no longer reliably be obtained by numerical differentiation.
   ifail=2
iflag has been set nonzero by the user.
   ifail=3
The function was unable to compute the Schur decomposition of A.
Note:  this failure should not occur and suggests that the function has been called incorrectly.
There was an error whilst reordering the Schur form of A.
Note:  this failure should not occur and suggests that the function has been called incorrectly.
   ifail=5
An unexpected internal error occurred. Please contact NAG.
   ifail=-1
Input argument number _ is invalid.
   ifail=-3
On entry, argument lda is invalid.
Constraint: ldan.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

For a normal matrix A (for which AHA=AAH) Schur decomposition is diagonal and the algorithm reduces to evaluating f at the eigenvalues of A and then constructing fA using the Schur vectors. See Section 9.4 of Higham (2008) for further discussion of the Schur–Parlett algorithm, and Lyness and Moler (1967) for a discussion of numerical differentiation.

Further Comments

The integer allocatable memory required is n, and up to 6n2 of complex allocatable memory is required.
The cost of the Schur–Parlett algorithm depends on the spectrum of A, but is roughly between 28n3 and n4/3 floating-point operations. There is an additional cost in numerically differentiating f, in order to obtain the Taylor series coefficients. If the derivatives of f are known analytically, then nag_matop_complex_gen_matrix_fun_usd (f01fm) can be used to evaluate fA more accurately. If A is complex Hermitian then it is recommended that nag_matop_complex_herm_matrix_fun (f01ff) be used as it is more efficient and, in general, more accurate than nag_matop_complex_gen_matrix_fun_num (f01fl).
Note that f must be analytic in the region of the complex plane containing the spectrum of A.
For further information on matrix functions, see Higham (2008).
If estimates of the condition number of the matrix function are required then nag_matop_complex_gen_matrix_cond_num (f01kb) should be used.
nag_matop_real_gen_matrix_fun_num (f01el) can be used to find the matrix function fA for a real matrix A.

Example

This example finds sin2A where
A= 1.0+0.0i 0.0+1.0i 1.0+0.0i 0.0+1.0i -1.0+0.0i 0.0+0.0i 2.0+1.0i 0.0+0.0i 0.0+0.0i 2.0+1.0i 0.0+2.0i 0.0+1.0i 1.0+0.0i 1.0+1.0i -1.0+0.0i 2.0+1.0i .  
function f01fl_example


fprintf('f01fl example results\n\n');

a = [1.0+0.0i, 0.0+1.0i,  1.0+0.0i, 0.0+1.0i;
    -1.0+0.0i, 0.0+0.0i,  2.0+1.0i, 0.0+0.0i;
     0.0+0.0i, 2.0+1.0i,  0.0+2.0i, 0.0+1.0i;
     1.0+0.0i, 1.0+1.0i, -1.0+0.0i, 2.0+1.0i];

% Compute f(a)
[sin2a, user, iflag, ifail] = f01fl(a, @f);

disp('f(A) = sin(2A)');
disp(sin2a);



function [iflag, fz, user] = f(iflag, nz, z, user)
  fz = sin(2*z);
f01fl example results

f(A) = sin(2A)
   1.1960 - 3.2270i -21.0733 - 9.6441i -15.4159 -14.1977i -12.4279 -11.9638i
   3.2957 - 3.6334i -14.6084 -21.4846i  -6.7764 -24.1726i  -5.1338 -17.0926i
   5.0928 - 3.7806i -14.6839 -34.5063i  -0.9231 -35.4729i  -2.0715 -26.3460i
  -1.8349 + 0.0808i  -8.2484 - 0.4014i  -6.0093 - 1.6831i  -7.1318 - 1.9396i


PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015