hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_matop_real_symm_posdef_inv_noref (f01ad)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_matop_real_symm_posdef_inv_noref (f01ad) calculates the approximate inverse of a real symmetric positive definite matrix, using a Cholesky factorization.

Syntax

[a, ifail] = f01ad(a, 'n', n)
[a, ifail] = nag_matop_real_symm_posdef_inv_noref(a, 'n', n)

Description

To compute the inverse X of a real symmetric positive definite matrix A, nag_matop_real_symm_posdef_inv_noref (f01ad) first computes a Cholesky factorization of A as A=LLT, where L is lower triangular. It then computes L-1 and finally forms X as the product L-TL-1.

References

Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra Springer–Verlag

Parameters

Compulsory Input Parameters

1:     alda: – double array
The first dimension of the array a must be at least n+1.
The second dimension of the array a must be at least max1,n.
The upper triangle of the n by n positive definite symmetric matrix A. The elements of the array below the diagonal need not be set.

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the second dimension of the array a.
n, the order of the matrix A.
Constraint: n0.

Output Parameters

1:     alda: – double array
The first dimension of the array a will be n+1.
The second dimension of the array a will be max1,n.
The lower triangle of the inverse matrix X is stored in the elements of the array below the diagonal, in rows 2 to n+1; xij is stored in ai+1j for ij. The upper triangle of the original matrix is unchanged.
2:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:
   ifail=1
The matrix A is not positive definite, possibly due to rounding errors.
   ifail=2
On entry,n<0,
orlda<n+1.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

The accuracy of the computed inverse depends on the conditioning of the original matrix. For a detailed error analysis see page 39 of Wilkinson and Reinsch (1971).

Further Comments

The time taken by nag_matop_real_symm_posdef_inv_noref (f01ad) is approximately proportional to n3. nag_matop_real_symm_posdef_inv_noref (f01ad) calls functions nag_lapack_dpotrf (f07fd) and nag_lapack_dpotri (f07fj) from LAPACK.

Example

This example finds the inverse of the 4 by 4 matrix:
5 7 6 5 7 10 8 7 6 8 10 9 5 7 9 10 .  
function f01ad_example


fprintf('f01ad example results\n\n');

a = [  5,  7,  6,  5;
       7, 10,  8,  7;
       6,  8, 10,  9;
       5,  7,  9, 10];

% add row for storing updates.
a = [a; 0 0 0 0];

[X, ifail] = f01ad(a);

L = X(2:end,:);
matrix = 'Lower';
diag   = 'Non-unit';
xtitl  = 'Lower triangle of inverse:';
[ifail] = x04ca( ...
                 matrix, diag, L, xtitl);


f01ad example results

 Lower triangle of inverse:
             1          2          3          4
 1     68.0000
 2    -41.0000    25.0000
 3    -17.0000    10.0000     5.0000
 4     10.0000    -6.0000    -3.0000     2.0000

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015