hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_quad_withdraw_1d_gauss_wset (d01bb)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_quad_1d_gauss_wset (d01bb) returns the weights and abscissae appropriate to a Gaussian quadrature formula with a specified number of abscissae. The formulae provided are Gauss–Legendre, rational Gauss, Gauss–Laguerre and Gauss–Hermite.
Note: this function is scheduled to be withdrawn, please see d01bb in Advice on Replacement Calls for Withdrawn/Superseded Routines..

Syntax

[weight, abscis, ifail] = d01bb(d01xxx, a, b, itype, n)
[weight, abscis, ifail] = nag_quad_withdraw_1d_gauss_wset(d01xxx, a, b, itype, n)

Description

nag_quad_1d_gauss_wset (d01bb) returns the weights and abscissae for use in the Gaussian quadrature of a function fx. The quadrature takes the form
S=i=1nwifxi  
where wi are the weights and xi are the abscissae (see Davis and Rabinowitz (1975), Fröberg (1970), Ralston (1965) or Stroud and Secrest (1966)).
Weights and abscissae are available for Gauss–Legendre, rational Gauss, Gauss–Laguerre and Gauss–Hermite quadrature, and for a selection of values of n (see Arguments).
(a) Gauss–Legendre Quadrature:
Sabfxdx  
where a and b are finite and it will be exact for any function of the form
fx=i=0 2n-1cixi.  
(b) Rational Gauss quadrature, adjusted weights:
Safx dx a+b> 0   or   S-a fx dx a+b< 0  
and will be exact for any function of the form
fx=i=2 2n+1cix+bi=i=0 2n-1c2n+1-ix+bix+b2n+1.  
(c) Gauss–Laguerre quadrature, adjusted weights:
Safx dx b> 0   or   S-a fx dx b< 0  
and will be exact for any function of the form
fx=e-bxi=0 2n-1cixi.  
(d) Gauss–Hermite quadrature, adjusted weights:
S- + fx dx  
and will be exact for any function of the form
fx=e-b x-a 2i=0 2n-1cixib>0.  
(e) Gauss–Laguerre quadrature, normal weights:
Sae-bxfx dx b> 0   or   S-a e-bxfx dx b< 0  
and will be exact for any function of the form
fx=i=0 2n-1cixi.  
(f) Gauss–Hermite quadrature, normal weights:
S- + e-b x-a 2fx dx 
and will be exact for any function of the form
fx=i=0 2n-1cixi.  
Note:  the Gauss–Legendre abscissae, with a=-1, b=+1, are the zeros of the Legendre polynomials; the Gauss–Laguerre abscissae, with a=0, b=1, are the zeros of the Laguerre polynomials; and the Gauss–Hermite abscissae, with a=0, b=1, are the zeros of the Hermite polynomials.

References

Davis P J and Rabinowitz P (1975) Methods of Numerical Integration Academic Press
Fröberg C E (1970) Introduction to Numerical Analysis Addison–Wesley
Ralston A (1965) A First Course in Numerical Analysis pp. 87–90 McGraw–Hill
Stroud A H and Secrest D (1966) Gaussian Quadrature Formulas Prentice–Hall

Parameters

Compulsory Input Parameters

1:     – string
String specifying the quadrature formula to be used:
  • 'd01baz', for Gauss–Legendre weights and abscissae;
  • 'd01bay', for rational Gauss weights and abscissae;
  • 'd01bax', for Gauss–Laguerre weights and abscissae;
  • 'd01baw', for Gauss–Hermite weights and abscissae.
2:     a – double scalar
3:     b – double scalar
The quantities a and b as described in the appropriate sub-section of Description.
4:     itype int64int32nag_int scalar
Indicates the type of weights for Gauss–Laguerre or Gauss–Hermite quadrature (see Description).
itype=1
Adjusted weights will be returned.
itype=0
Normal weights will be returned.
Constraint: itype=0 or 1.
For Gauss–Legendre or rational Gauss quadrature, this argument is not used.
5:     n int64int32nag_int scalar
n, the number of weights and abscissae to be returned.
Constraint: n=1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 20, 24, 32, 48 or 64.

Optional Input Parameters

None.

Output Parameters

1:     weightn – double array
The n weights. For Gauss–Laguerre and Gauss–Hermite quadrature, these will be the adjusted weights if itype=1, and the normal weights if itype=0.
2:     abscisn – double array
The n abscissae.
3:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:

Cases prefixed with W are classified as warnings and do not generate an error of type NAG:error_n. See nag_issue_warnings.

W  ifail=1
The N-point rule is not among those stored. If the soft fail option is used, the weights and abscissae returned will be those for the largest valid value of n less than the requested value, and the excess elements of weight and abscis (i.e., up to the requested n) will be filled with zeros.
   ifail=2
The value of a and/or b is invalid.
Rational Gauss: a+b=0.0 
Gauss–Laguerre: b=0.0 
Gauss–Hermite: b0.0
If the soft fail option is used the weights and abscissae are returned as zero.
W  ifail=3
Laguerre and Hermite normal weights only: underflow is occurring in evaluating one or more of the normal weights. If the soft fail option is used, the underflowing weights are returned as zero. A smaller value of n must be used; or adjusted weights should be used (itype=1). In the latter case, take care that underflow does not occur when evaluating the integrand appropriate for adjusted weights.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

The weights and abscissae are stored for standard values of a and b to full machine accuracy.

Further Comments

Timing is negligible.

Example

This example returns the abscissae and (adjusted) weights for the six-point Gauss–Laguerre formula.
function d01bb_example


fprintf('d01bb example results\n\n');

a = 0;
b = 1;
itype = int64(1);
n = int64(6);

[weight, abscis, ifail] = ...
  d01bb( ...
	 'd01bax', a, b, itype, n);

fprintf('  Weights    Abscissae\n');
fprintf('%9.4f%12.4f\n',[weight abscis]');


d01bb example results

  Weights    Abscissae
   0.5735      0.2228
   1.3693      1.1889
   2.2607      2.9927
   3.3505      5.7751
   4.8868      9.8375
   7.8490     15.9829

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015