PDF version (NAG web site
, 64-bit version, 64-bit version)
NAG Toolbox: nag_quad_1d_fin_osc_vec (d01au)
Purpose
nag_quad_1d_fin_osc_vec (d01au) is an adaptive integrator, especially suited to oscillating, nonsingular integrands, which calculates an approximation to the integral of a function
over a finite interval
:
Syntax
[
result,
abserr,
w,
iw,
ifail] = d01au(
f,
a,
b,
epsabs,
epsrel, 'key',
key, 'lw',
lw, 'liw',
liw)
[
result,
abserr,
w,
iw,
ifail] = nag_quad_1d_fin_osc_vec(
f,
a,
b,
epsabs,
epsrel, 'key',
key, 'lw',
lw, 'liw',
liw)
Description
nag_quad_1d_fin_osc_vec (d01au) is based on the QUADPACK routine QAG (see
Piessens et al. (1983)). It is an adaptive function, offering a choice of six Gauss–Kronrod rules. A global acceptance criterion (as defined by
Malcolm and Simpson (1976)) is used. The local error estimation is described in
Piessens et al. (1983).
Because nag_quad_1d_fin_osc_vec (d01au) is based on integration rules of high order, it is especially suitable for nonsingular oscillating integrands.
nag_quad_1d_fin_osc_vec (d01au) requires a function to evaluate the integrand at an array of different points and is therefore amenable to parallel execution. Otherwise this algorithm with
is identical to that used by
nag_quad_1d_fin_osc (d01ak).
References
Malcolm M A and Simpson R B (1976) Local versus global strategies for adaptive quadrature ACM Trans. Math. Software 1 129–146
Piessens R (1973) An algorithm for automatic integration Angew. Inf. 15 399–401
Piessens R, de Doncker–Kapenga E, Überhuber C and Kahaner D (1983) QUADPACK, A Subroutine Package for Automatic Integration Springer–Verlag
Parameters
Compulsory Input Parameters
- 1:
– function handle or string containing name of m-file
-
f must return the values of the integrand
at a set of points.
[fv] = f(x, n)
Input Parameters
- 1:
– double array
-
The points at which the integrand must be evaluated.
- 2:
– int64int32nag_int scalar
-
The number of points at which the integrand is to be evaluated. The actual value of
n is equal to the number of points in the Kronrod rule (see specification of
key).
Output Parameters
- 1:
– double array
-
must contain the value of at the point , for .
- 2:
– double scalar
-
, the lower limit of integration.
- 3:
– double scalar
-
, the upper limit of integration. It is not necessary that .
- 4:
– double scalar
-
The absolute accuracy required. If
epsabs is negative, the absolute value is used. See
Accuracy.
- 5:
– double scalar
-
The relative accuracy required. If
epsrel is negative, the absolute value is used. See
Accuracy.
Optional Input Parameters
- 1:
– int64int32nag_int scalar
Default:
Indicates which integration rule is to be used.
- For the Gauss -point and Kronrod -point rule.
- For the Gauss -point and Kronrod -point rule.
- For the Gauss -point and Kronrod -point rule.
- For the Gauss -point and Kronrod -point rule.
- For the Gauss -point and Kronrod -point rule.
- For the Gauss -point and Kronrod -point rule.
Constraint:
, , , , or .
- 2:
– int64int32nag_int scalar
Suggested value:
to is adequate for most problems.
Default:
The dimension of the array
w. the value of
lw (together with that of
liw) imposes a bound on the number of sub-intervals into which the interval of integration may be divided by the function. The number of sub-intervals cannot exceed
. The more difficult the integrand, the larger
lw should be.
Constraint:
.
- 3:
– int64int32nag_int scalar
Default:
The dimension of the array
iw.
The number of sub-intervals into which the interval of integration may be divided cannot exceed
liw.
Constraint:
.
Output Parameters
- 1:
– double scalar
-
The approximation to the integral .
- 2:
– double scalar
-
An estimate of the modulus of the absolute error, which should be an upper bound for .
- 3:
– double array
-
Details of the computation see
Further Comments for more information.
- 4:
– int64int32nag_int array
-
contains the actual number of sub-intervals used. The rest of the array is used as workspace.
- 5:
– int64int32nag_int scalar
unless the function detects an error (see
Error Indicators and Warnings).
Error Indicators and Warnings
Note: nag_quad_1d_fin_osc_vec (d01au) may return useful information for one or more of the following detected errors or warnings.
Errors or warnings detected by the function:
Cases prefixed with W are classified as warnings and
do not generate an error of type NAG:error_n. See nag_issue_warnings.
- W
-
The maximum number of subdivisions allowed with the given workspace has been reached without the accuracy requirements being achieved. Look at the integrand in order to determine the integration difficulties. If necessary, another integrator, which is designed for handling the type of difficulty involved, must be used. Alternatively, consider relaxing the accuracy requirements specified by
epsabs and
epsrel, or increasing the amount of workspace.
- W
-
Round-off error prevents the requested tolerance from being achieved. Consider requesting less accuracy.
- W
-
Extremely bad local integrand behaviour causes a very strong subdivision around one (or more) points of the interval. The same advice applies as in the case of .
-
-
On entry, , , , , or .
-
-
-
An unexpected error has been triggered by this routine. Please
contact
NAG.
-
Your licence key may have expired or may not have been installed correctly.
-
Dynamic memory allocation failed.
Accuracy
nag_quad_1d_fin_osc_vec (d01au) cannot guarantee, but in practice usually achieves, the following accuracy:
where
and
epsabs and
epsrel are user-specified absolute and relative error tolerances. Moreover, it returns the quantity
abserr which, in normal circumstances, satisfies
Further Comments
If
on exit, then you may wish to examine the contents of the array
w, which contains the end points of the sub-intervals used by
nag_quad_1d_fin_osc_vec (d01au) along with the integral contributions and error estimates over these sub-intervals.
Specifically, for
, let
denote the approximation to the value of the integral over the sub-interval
in the partition of
and
be the corresponding absolute error estimate. Then,
and
. The value of
is returned in
, and the values
,
,
and
are stored consecutively in the array
w, that is:
- ,
- ,
- and
- .
Example
Open in the MATLAB editor:
d01au_example
function d01au_example
fprintf('d01au example results\n\n');
a = 0;
b = 2*pi;
epsabs = 0;
epsrel = 0.001;
[result, abserr, w, iw, ifail] = ...
d01au( ...
@f, a, b, epsabs, epsrel);
fprintf('Result = %13.5f, Standard error = %10.2e\n', result, abserr);
function [fv] = f(x,n)
fv=zeros(n,1);
for i=1:n
fv(i) = x(i)*sin(30*x(i))*cos(x(i));
end
d01au example results
Result = -0.20967, Standard error = 4.48e-14
PDF version (NAG web site
, 64-bit version, 64-bit version)
© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015