C05 – roots of one or more transcendental equations
- C05 Introduction
- c05au – Zero of continuous function, Brent algorithm, from a given starting value, binary search for interval
- nag_roots_contfn_brent_interval
- c05av – Binary search for interval containing zero of continuous function (reverse communication)
- nag_roots_contfn_interval_rcomm
- c05aw – Zero of continuous function, continuation method, from a given starting value
- nag_roots_contfn_cntin
- c05ax – Zero of continuous function, continuation method, from a given starting value (reverse communication)
- nag_roots_contfn_cntin_rcomm
- c05ay – Zero of continuous function in a given interval, Brent algorithm
- nag_roots_contfn_brent
- c05az – Zero of continuous function in a given interval, Brent algorithm (reverse communication)
- nag_roots_contfn_brent_rcomm
- c05ba – Real values of Lambert's W function, W(x)
- nag_roots_lambertw_real
- c05bb – Values of Lambert's W function, W(z)
- nag_roots_lambertw_complex
- c05qb – Solution of a system of nonlinear equations using function values only (easy-to-use)
- nag_roots_sys_func_easy
- c05qc – Solution of a system of nonlinear equations using function values only (comprehensive)
- nag_roots_sys_func_expert
- c05qd – Solution of a system of nonlinear equations using function values only (reverse communication)
- nag_roots_sys_func_rcomm
- c05qs – Solution of a sparse system of nonlinear equations using function values only (easy-to-use)
- nag_roots_sparsys_func_expert
- c05rb – Solution of a system of nonlinear equations using first derivatives (easy-to-use)
- nag_roots_sys_deriv_easy
- c05rc – Solution of a system of nonlinear equations using first derivatives (comprehensive)
- nag_roots_sys_deriv_expert
- c05rd – Solution of a system of nonlinear equations using first derivatives (reverse communication)
- nag_roots_sys_deriv_rcomm
- c05zd – Check user's function for calculating first derivatives of a set of nonlinear functions of several variables
- nag_roots_sys_deriv_check