hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_machine_precision (x02aj)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_machine_precision (x02aj) returns ε, the value machine precision.

Syntax

[result] = x02aj
[result] = nag_machine_precision

Description

nag_machine_precision (x02aj) returns machine precision, computed as ε = 12 × b1-p , where b is the arithmetic base (see nag_machine_model_base (x02bh)) and p is the number of significant base-b digits (see nag_machine_model_digits (x02bj)).
It is important to note that the definition of ε here differs from that in ISO (1997).

References

ISO (1997) ISO Fortran 95 programming language (ISO/IEC 1539–1:1997)

Parameters

Compulsory Input Parameters

None.

Optional Input Parameters

None.

Output Parameters

1:     result – double scalar
The result of the function.

Error Indicators and Warnings

None.

Accuracy

None.

Further Comments

None.

Example

This example prints the values of all the functions in Chapter X02. The results will vary from one implementation of the Library to another.
function x02aj_example


fprintf('x02aj example results\n\n');

fprintf('(results are machine-dependent)\n');

fprintf('\nThe basic parameters of the model\n\n');
fprintf('the model parameter B    (x02bh) = %8d\n', ...
        x02bh);
fprintf('the model parameter P    (x02bj) = %8d\n', ...
        x02bj);
fprintf('the model parameter Emin (x02bk) = %8d\n', ...
        x02bk);
fprintf('the model parameter Emax (x02bl) = %8d\n', ...
        x02bl);

fprintf('\nDerived parameters of floating-point arithmetic\n\n')
fprintf('the machine precision               (x02aj) = %21.15e\n', ...
        x02aj);
fprintf('the smallest positive model number  (x02ak) = %22.15e\n', ...
        x02ak);
fprintf('the largest positive model number   (x02al) = %22.15e\n', ...
        x02al);
fprintf('the real safe range parameter       (x02am) = %22.15e\n', ...
        x02am);
fprintf('the complex safe range parameter    (x02an) = %22.15e\n', ...
        x02an);

fprintf('\nParameters of other aspects of the computing environment\n\n');
fprintf('largest argument of sin and cos (x02ah) = %20.8e\n', ...
        x02ah);
fprintf('the largest positive integer    (x02bb) = %20d\n', ...
        x02bb);
fprintf('precision in decimal digits     (x02be) = %20d\n', ...
        x02be);


x02aj example results

(results are machine-dependent)

The basic parameters of the model

the model parameter B    (x02bh) =        2
the model parameter P    (x02bj) =       53
the model parameter Emin (x02bk) =    -1021
the model parameter Emax (x02bl) =     1024

Derived parameters of floating-point arithmetic

the machine precision               (x02aj) = 1.110223024625157e-16
the smallest positive model number  (x02ak) = 2.225073858507201e-308
the largest positive model number   (x02al) = 1.797693134862316e+308
the real safe range parameter       (x02am) = 2.225073858507202e-308
the complex safe range parameter    (x02an) = 2.225073858507202e-308

Parameters of other aspects of the computing environment

largest argument of sin and cos (x02ah) =       1.42724769e+45
the largest positive integer    (x02bb) =  9223372036854775807
precision in decimal digits     (x02be) =                   15

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015