hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_specfun_bessel_k0_scaled (s18cc)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_specfun_bessel_k0_scaled (s18cc) returns a value of the scaled modified Bessel function exK0x via the function name.

Syntax

[result, ifail] = s18cc(x)
[result, ifail] = nag_specfun_bessel_k0_scaled(x)

Description

nag_specfun_bessel_k0_scaled (s18cc) evaluates an approximation to exK0x, where K0 is a modified Bessel function of the second kind. The scaling factor ex removes most of the variation in K0x.
The function uses the same Chebyshev expansions as nag_specfun_bessel_k0_real (s18ac), which returns the unscaled value of K0x.

References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover Publications

Parameters

Compulsory Input Parameters

1:     x – double scalar
The argument x of the function.
Constraint: x>0.0.

Optional Input Parameters

None.

Output Parameters

1:     result – double scalar
The result of the function.
2:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:
   ifail=1
On entry, x0.0, K0 is undefined.
On soft failure, nag_specfun_bessel_k0_scaled (s18cc) returns zero.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

Relative errors in the argument are attenuated when propagated into the function value. When the accuracy of the argument is essentially limited by the machine precision, the accuracy of the function value will be similarly limited by at most a small multiple of the machine precision.

Further Comments

None.

Example

This example reads values of the argument x from a file, evaluates the function at each value of x and prints the results.
function s18cc_example


fprintf('s18cc example results\n\n');

x = [0.4  0.6  1.4  2.5  10  1000];
n = size(x,2);
result = x;

for j=1:n
  [result(j), ifail] = s18cc(x(j));
end

disp('      x        e^xK_0(x)');
fprintf('%12.3e%12.3e\n',[x; result]);


s18cc example results

      x        e^xK_0(x)
   4.000e-01   1.663e+00
   6.000e-01   1.417e+00
   1.400e+00   9.881e-01
   2.500e+00   7.595e-01
   1.000e+01   3.916e-01
   1.000e+03   3.963e-02

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015