hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_specfun_bessel_i1_real_vector (s18at)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_specfun_bessel_i1_real_vector (s18at) returns an array of values for the modified Bessel function I1x.

Syntax

[f, ivalid, ifail] = s18at(x, 'n', n)
[f, ivalid, ifail] = nag_specfun_bessel_i1_real_vector(x, 'n', n)

Description

nag_specfun_bessel_i1_real_vector (s18at) evaluates an approximation to the modified Bessel function of the first kind I1xi for an array of arguments xi, for i=1,2,,n.
Note:  I1-x=-I1x, so the approximation need only consider x0.
The function is based on three Chebyshev expansions:
For 0<x4,
I1x=xr=0arTrt,   where ​t=2 x4 2-1;  
For 4<x12,
I1x=exr=0brTrt,   where ​t=x-84;  
For x>12,
I1x=exx r=0crTrt,   where ​t=2 12x -1.  
For small x, I1xx. This approximation is used when x is sufficiently small for the result to be correct to machine precision.
For large x, the function must fail because I1x cannot be represented without overflow.

References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover Publications

Parameters

Compulsory Input Parameters

1:     xn – double array
The argument xi of the function, for i=1,2,,n.

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the dimension of the array x.
n, the number of points.
Constraint: n0.

Output Parameters

1:     fn – double array
I1xi, the function values.
2:     ivalidn int64int32nag_int array
ivalidi contains the error code for xi, for i=1,2,,n.
ivalidi=0
No error.
ivalidi=1
xi is too large. fi contains the approximate value of I1xi at the nearest valid argument. The threshold value is the same as for ifail=1 in nag_specfun_bessel_i1_real (s18af), as defined in the Users' Note for your implementation.
3:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:

Cases prefixed with W are classified as warnings and do not generate an error of type NAG:error_n. See nag_issue_warnings.

W  ifail=1
On entry, at least one value of x was invalid.
Check ivalid for more information.
   ifail=2
Constraint: n0.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

Let δ and ε be the relative errors in the argument and result respectively.
If δ is somewhat larger than the machine precision (i.e., if δ is due to data errors etc.), then ε and δ are approximately related by:
ε xI0x- I1x I1 x δ.  
Figure 1 shows the behaviour of the error amplification factor
xI0x - I1x I1x .  
Figure 1
Figure 1
However, if δ is of the same order as machine precision, then rounding errors could make ε slightly larger than the above relation predicts.
For small x, εδ and there is no amplification of errors.
For large x, εxδ and we have strong amplification of errors. However, for quite moderate values of x (x>x^, the threshold value), the function must fail because I1x would overflow; hence in practice the loss of accuracy for x close to x^ is not excessive and the errors will be dominated by those of the standard function exp.

Further Comments

None.

Example

This example reads values of x from a file, evaluates the function at each value of xi and prints the results.
function s18at_example


fprintf('s18at example results\n\n');

x = [0; 0.5; 1; 3; 6; 8; 10; 15; 20; -1];

[f, ivalid, ifail] = s18at(x);

fprintf('     x           I_1(x)   ivalid\n');
for i=1:numel(x)
  fprintf('%12.3e%12.3e%5d\n', x(i), f(i), ivalid(i));
end


s18at example results

     x           I_1(x)   ivalid
   0.000e+00   0.000e+00    0
   5.000e-01   2.579e-01    0
   1.000e+00   5.652e-01    0
   3.000e+00   3.953e+00    0
   6.000e+00   6.134e+01    0
   8.000e+00   3.999e+02    0
   1.000e+01   2.671e+03    0
   1.500e+01   3.281e+05    0
   2.000e+01   4.245e+07    0
  -1.000e+00  -5.652e-01    0

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015