hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_sort_realmat_rank_columns (m01dj)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_sort_realmat_rank_columns (m01dj) ranks the columns of a matrix of double numbers in ascending or descending order.

Syntax

[irank, ifail] = m01dj(rm, m1, n1, order, 'm2', m2, 'n2', n2)
[irank, ifail] = nag_sort_realmat_rank_columns(rm, m1, n1, order, 'm2', m2, 'n2', n2)
Note: the interface to this routine has changed since earlier releases of the toolbox:
At Mark 22: m2 was made optional

Description

nag_sort_realmat_rank_columns (m01dj) ranks columns n1 to n2 of a matrix, using the data in rows m1 to m2 of those columns. The ordering is determined by first ranking the data in row m1, then ranking any tied columns according to the data in row m1+1, and so on up to row m2.
nag_sort_realmat_rank_columns (m01dj) uses a variant of list-merging, as described on pages 165–166 in Knuth (1973). The function takes advantage of natural ordering in the data, and uses a simple list insertion in a preparatory pass to generate ordered lists of length at least 10. The ranking is stable: equal columns preserve their ordering in the input data.

References

Knuth D E (1973) The Art of Computer Programming (Volume 3) (2nd Edition) Addison–Wesley

Parameters

Compulsory Input Parameters

1:     rmldmn2 – double array
ldm, the first dimension of the array, must satisfy the constraint ldmm2.
Rows m1 to m2 of columns n1 to n2 of rm must contain double data to be ranked.
2:     m1 int64int32nag_int scalar
The index of the first row of rm to be used.
Constraint: m1>0.
3:     n1 int64int32nag_int scalar
The index of the first column of rm to be ranked.
Constraint: n1>0.
4:     order – string (length ≥ 1)
If order='A', the columns will be ranked in ascending (i.e., nondecreasing) order.
If order='D', into descending order.
Constraint: order='A' or 'D'.

Optional Input Parameters

1:     m2 int64int32nag_int scalar
Default: the first dimension of the array rm.
The index of the last row of rm to be used.
Constraint: m2m1.
2:     n2 int64int32nag_int scalar
Default: the second dimension of the array rm.
The index of the last column of rm to be ranked.
Constraint: n2n1.

Output Parameters

1:     irankn2 int64int32nag_int array
Elements n1 to n2 of irank contain the ranks of the corresponding columns of rm. Note that the ranks are in the range n1 to n2: thus, if the ith column of rm is the first in the rank order, iranki is set to n1.
2:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:
   ifail=1
On entry,m2<1,
orn2<1,
orm1<1,
orm1>m2,
orn1<1,
orn1>n2,
orldm<m2.
   ifail=2
On entry,order is not 'A' or 'D'.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

Not applicable.

Further Comments

The average time taken by the function is approximately proportional to n×logn, where n=n2-n1+1.

Example

This example reads a matrix of double numbers and ranks the columns in ascending order.
function m01dj_example


fprintf('m01dj example results\n\n');

rm = [5, 4, 3, 2, 2, 1, 9, 4, 4, 2, 2, 1;
      3, 8, 2, 5, 5, 6, 9, 8, 9, 5, 4, 1;
      9, 1, 6, 1, 2, 4, 8, 1, 2, 2, 6, 2];

m1 = int64(1);
n1 = int64(1);
order = 'Ascending';

[irank, ifail] = m01dj( ...
                        rm, m1, n1, order);

fprintf('Data\n');
for i = 1:size(rm,1)
  fprintf('%7.1f',rm(i,:));
  fprintf('\n');
end
fprintf('\nRanks\n');
fprintf('%7d',irank);
fprintf('\n');


m01dj example results

Data
    5.0    4.0    3.0    2.0    2.0    1.0    9.0    4.0    4.0    2.0    2.0    1.0
    3.0    8.0    2.0    5.0    5.0    6.0    9.0    8.0    9.0    5.0    4.0    1.0
    9.0    1.0    6.0    1.0    2.0    4.0    8.0    1.0    2.0    2.0    6.0    2.0

Ranks
     11      8      7      4      5      2     12      9     10      6      3      1

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015