PDF version (NAG web site
, 64-bit version, 64-bit version)
NAG Toolbox: nag_tsa_multi_spectrum_daniell (g13cd)
Purpose
nag_tsa_multi_spectrum_daniell (g13cd) calculates the smoothed sample cross spectrum of a bivariate time series using spectral smoothing by the trapezium frequency (Daniell) window.
Syntax
[
xg,
yg,
ng,
ifail] = g13cd(
nxy,
mtxy,
pxy,
mw,
ish,
pw,
l,
xg,
yg, 'kc',
kc)
[
xg,
yg,
ng,
ifail] = nag_tsa_multi_spectrum_daniell(
nxy,
mtxy,
pxy,
mw,
ish,
pw,
l,
xg,
yg, 'kc',
kc)
Description
The supplied time series may be mean and trend corrected and tapered as in the description of
nag_tsa_uni_spectrum_daniell (g13cb) before calculation of the unsmoothed sample cross-spectrum
for frequency values
,
.
A correction is made for bias due to any tapering.
As in the description of
nag_tsa_uni_spectrum_daniell (g13cb) for univariate frequency window smoothing, the smoothed spectrum is returned as a subset of these frequencies,
where [ ] denotes the integer part.
Its real part or co-spectrum
, and imaginary part or quadrature spectrum
are defined by
where the weights
are similar to the weights
defined for
nag_tsa_uni_spectrum_daniell (g13cb), but allow for an implicit alignment shift
between the series:
It is recommended that
is chosen as the lag
at which the cross-covariances
peak, so as to minimize bias.
If no smoothing is required, the integer , which determines the frequency window width , should be set to .
The bandwidth of the estimates will normally have been calculated in a previous call of
nag_tsa_uni_spectrum_daniell (g13cb) for estimating the univariate spectra of
and
.
References
Bloomfield P (1976) Fourier Analysis of Time Series: An Introduction Wiley
Jenkins G M and Watts D G (1968) Spectral Analysis and its Applications Holden–Day
Parameters
Compulsory Input Parameters
- 1:
– int64int32nag_int scalar
-
, the length of the time series and .
Constraint:
.
- 2:
– int64int32nag_int scalar
-
Whether the data is to be initially mean or trend corrected.
- For no correction.
- For mean correction.
- For trend correction.
Constraint:
.
- 3:
– double scalar
-
The proportion of the data (totalled over both ends) to be initially tapered by the split cosine bell taper.
A value of implies no tapering.
Constraint:
.
- 4:
– int64int32nag_int scalar
-
, the frequency width of the smoothing window as
.
A value of implies that no smoothing is to be carried out.
Constraint:
.
- 5:
– int64int32nag_int scalar
-
, the alignment shift between the and series. If leads , the shift is positive.
Constraint:
.
- 6:
– double scalar
-
, the shape parameter of the trapezium frequency window.
A value of gives a triangular window, and a value of a rectangular window.
If
(i.e., no smoothing is carried out) then
pw is not used.
Constraint:
if , .
- 7:
– int64int32nag_int scalar
-
, the frequency division of smoothed cross spectral estimates as .
Constraints:
- ;
- l must be a factor of kc.
- 8:
– double array
-
The
nxy data points of the
series.
- 9:
– double array
-
The
nxy data points of the
series.
Optional Input Parameters
- 1:
– int64int32nag_int scalar
-
Default:
the dimension of the arrays
xg,
yg. (An error is raised if these dimensions are not equal.)
The dimension of the arrays
xg and
yg. the order of the fast Fourier transform (FFT) used to calculate the spectral estimates.
kc should be a product of small primes such as
where
is the smallest integer such that
, provided
.
Constraints:
- ;
- kc must be a multiple of l. The largest prime factor of kc must not exceed , and the total number of prime factors of kc, counting repetitions, must not exceed . These two restrictions are imposed by the internal FFT algorithm used.
Output Parameters
- 1:
– double array
-
The real parts of the
ng cross spectral estimates in elements
to
, and
to
contain
. The
series leads the
series.
- 2:
– double array
-
The imaginary parts of the
ng cross spectral estimates in elements
to
, and
to
contain
. The
series leads the
series.
- 3:
– int64int32nag_int scalar
-
The number of spectral estimates,
, whose separate parts are held in
xg and
yg.
- 4:
– int64int32nag_int scalar
unless the function detects an error (see
Error Indicators and Warnings).
Error Indicators and Warnings
Errors or warnings detected by the function:
-
-
On entry, | , |
or | , |
or | , |
or | , |
or | , |
or | , |
or | , |
or | and , |
or | and , |
or | , |
or | . |
-
-
On entry, | , |
or | kc is not a multiple of l, |
or | kc has a prime factor exceeding , |
or | kc has more than prime factors, counting repetitions. |
-
-
This indicates that a serious error has occurred. Check all array subscripts in calls to nag_tsa_multi_spectrum_daniell (g13cd). Seek expert help.
-
An unexpected error has been triggered by this routine. Please
contact
NAG.
-
Your licence key may have expired or may not have been installed correctly.
-
Dynamic memory allocation failed.
Accuracy
The FFT is a numerically stable process, and any errors introduced during the computation will normally be insignificant compared with uncertainty in the data.
Further Comments
nag_tsa_multi_spectrum_daniell (g13cd) carries out an FFT of length
kc to calculate the sample cross spectrum. The time taken by the function for this is approximately proportional to
(but see function document
nag_sum_fft_realherm_1d (c06pa) for further details).
Example
This example reads two time series of length . It selects mean correction and a 10% tapering proportion. It selects a frequency width of smoothing window, a window shape parameter of and an alignment shift of . It then calls nag_tsa_multi_spectrum_daniell (g13cd) to calculate the smoothed sample cross spectrum and prints the results.
Open in the MATLAB editor:
g13cd_example
function g13cd_example
fprintf('g13cd example results\n\n');
nxy = int64(296);
mtxy = int64(1);
pxy = 0.1;
iw = int64(4);
mw = int64(16);
ish = int64(3);
kc = int64(640);
l = int64(80);
pw = 0.5;
xg = zeros(kc, 1);
xg(1:nxy) = ...
[-0.109; 0.000; 0.178; 0.339; 0.373; 0.441; 0.461; 0.348; 0.127;-0.180;
-0.588;-1.055;-1.421;-1.520;-1.302;-0.814;-0.475;-0.193; 0.088; 0.435;
0.771; 0.866; 0.875; 0.891; 0.987; 1.263; 1.775; 1.976; 1.934; 1.866;
1.832; 1.767; 1.608; 1.265; 0.790; 0.360; 0.115; 0.088; 0.331; 0.645;
0.960; 1.409; 2.670; 2.834; 2.812; 2.483; 1.929; 1.485; 1.214; 1.239;
1.608; 1.905; 2.023; 1.815; 0.535; 0.122; 0.009; 0.164; 0.671; 1.019;
1.146; 1.155; 1.112; 1.121; 1.223; 1.257; 1.157; 0.913; 0.620; 0.255;
-0.280;-1.080;-1.551;-1.799;-1.825;-1.456;-0.944;-0.570;-0.431;-0.577;
-0.960;-1.616;-1.875;-1.891;-1.746;-1.474;-1.201;-0.927;-0.524; 0.040;
0.788; 0.943; 0.930; 1.006; 1.137; 1.198; 1.054; 0.595;-0.080;-0.314;
-0.288;-0.153;-0.109;-0.187;-0.255;-0.299;-0.007; 0.254; 0.330; 0.102;
-0.423;-1.139;-2.275;-2.594;-2.716;-2.510;-1.790;-1.346;-1.081;-0.910;
-0.876;-0.885;-0.800;-0.544;-0.416;-0.271; 0.000; 0.403; 0.841; 1.285;
1.607; 1.746; 1.683; 1.485; 0.993; 0.648; 0.577; 0.577; 0.632; 0.747;
0.999; 0.993; 0.968; 0.790; 0.399;-0.161;-0.553;-0.603;-0.424;-0.194;
-0.049; 0.060; 0.161; 0.301; 0.517; 0.566; 0.560; 0.573; 0.592; 0.671;
0.933; 1.337; 1.460; 1.353; 0.772; 0.218;-0.237;-0.714;-1.099;-1.269;
-1.175;-0.676; 0.033; 0.556; 0.643; 0.484; 0.109;-0.310;-0.697;-1.047;
-1.218;-1.183;-0.873;-0.336; 0.063; 0.084; 0.000; 0.001; 0.209; 0.556;
0.782; 0.858; 0.918; 0.862; 0.416;-0.336;-0.959;-1.813;-2.378;-2.499;
-2.473;-2.330;-2.053;-1.739;-1.261;-0.569;-0.137;-0.024;-0.050;-0.135;
-0.276;-0.534;-0.871;-1.243;-1.439;-1.422;-1.175;-0.813;-0.634;-0.582;
-0.625;-0.713;-0.848;-1.039;-1.346;-1.628;-1.619;-1.149;-0.488;-0.160;
-0.007;-0.092;-0.620;-1.086;-1.525;-1.858;-2.029;-2.024;-1.961;-1.952;
-1.794;-1.302;-1.030;-0.918;-0.798;-0.867;-1.047;-1.123;-0.876;-0.395;
0.185; 0.662; 0.709; 0.605; 0.501; 0.603; 0.943; 1.223; 1.249; 0.824;
0.102; 0.025; 0.382; 0.922; 1.032; 0.866; 0.527; 0.093;-0.458;-0.748;
-0.947;-1.029;-0.928;-0.645;-0.424;-0.276;-0.158;-0.033; 0.102; 0.251;
0.280; 0.000;-0.493;-0.759;-0.824;-0.740;-0.528;-0.204; 0.034; 0.204;
0.253; 0.195; 0.131; 0.017;-0.182;-0.262];
yg = zeros(kc, 1);
yg(1:nxy) = ...
[53.8; 53.6; 53.5; 53.5; 53.4; 53.1; 52.7; 52.4; 52.2; 52.0; 52.0; 52.4;
53.0; 54.0; 54.9; 56.0; 56.8; 56.8; 56.4; 55.7; 55.0; 54.3; 53.2; 52.3;
51.6; 51.2; 50.8; 50.5; 50.0; 49.2; 48.4; 47.9; 47.6; 47.5; 47.5; 47.6;
48.1; 49.0; 50.0; 51.1; 51.8; 51.9; 51.7; 51.2; 50.0; 48.3; 47.0; 45.8;
45.6; 46.0; 46.9; 47.8; 48.2; 48.3; 47.9; 47.2; 47.2; 48.1; 49.4; 50.6;
51.5; 51.6; 51.2; 50.5; 50.1; 49.8; 49.6; 49.4; 49.3; 49.2; 49.3; 49.7;
50.3; 51.3; 52.8; 54.4; 56.0; 56.9; 57.5; 57.3; 56.6; 56.0; 55.4; 55.4;
56.4; 57.2; 58.0; 58.4; 58.4; 58.1; 57.7; 57.0; 56.0; 54.7; 53.2; 52.1;
51.6; 51.0; 50.5; 50.4; 51.0; 51.8; 52.4; 53.0; 53.4; 53.6; 53.7; 53.8;
53.8; 53.8; 53.3; 53.0; 52.9; 53.4; 54.6; 56.4; 58.0; 59.4; 60.2; 60.0;
59.4; 58.4; 57.6; 56.9; 56.4; 56.0; 55.7; 55.3; 55.0; 54.4; 53.7; 52.8;
51.6; 50.6; 49.4; 48.8; 48.5; 48.7; 49.2; 49.8; 50.4; 50.7; 50.9; 50.7;
50.5; 50.4; 50.2; 50.4; 51.2; 52.3; 53.2; 53.9; 54.1; 54.0; 53.6; 53.2;
53.0; 52.8; 52.3; 51.9; 51.6; 51.6; 51.4; 51.2; 50.7; 50.0; 49.4; 49.3;
49.7; 50.6; 51.8; 53.0; 54.0; 55.3; 55.9; 55.9; 54.6; 53.5; 52.4; 52.1;
52.3; 53.0; 53.8; 54.6; 55.4; 55.9; 55.9; 55.2; 54.4; 53.7; 53.6; 53.6;
53.2; 52.5; 52.0; 51.4; 51.0; 50.9; 52.4; 53.5; 55.6; 58.0; 59.5; 60.0;
60.4; 60.5; 60.2; 59.7; 59.0; 57.6; 56.4; 55.2; 54.5; 54.1; 54.1; 54.4;
55.5; 56.2; 57.0; 57.3; 57.4; 57.0; 56.4; 55.9; 55.5; 55.3; 55.2; 55.4;
56.0; 56.5; 57.1; 57.3; 56.8; 55.6; 55.0; 54.1; 54.3; 55.3; 56.4; 57.2;
57.8; 58.3; 58.6; 58.8; 58.8; 58.6; 58.0; 57.4; 57.0; 56.4; 56.3; 56.4;
56.4; 56.0; 55.2; 54.0; 53.0; 52.0; 51.6; 51.6; 51.1; 50.4; 50.0; 50.0;
52.0; 54.0; 55.1; 54.5; 52.8; 51.4; 50.8; 51.2; 52.0; 52.8; 53.8; 54.5;
54.9; 54.9; 54.8; 54.4; 53.7; 53.3; 52.8; 52.6; 52.6; 53.0; 54.3; 56.0;
57.0; 58.0; 58.6; 58.5; 58.3; 57.8; 57.3; 57];
[xg, yg, ng, ifail] = ...
g13cd( ...
nxy, mtxy, pxy, mw, ish, pw, l, xg, yg);
fprintf(' Returned sample spectrum\n\n');
fprintf('%23s%22s%22s\n', 'Real Imaginary', 'Real Imaginary', ...
'Real Imaginary');
fprintf('%21s%22s%22s\n', 'Lag part part', ' Lag part part', ...
' Lag part part');
result = [double([0:ng-1]); xg(1:ng)'; yg(1:ng)'];
for j = 1:3:ng
fprintf('%4d%9.4f%9.4f', result(:,j:min(j+2,ng)));
fprintf('\n');
end
g13cd example results
Returned sample spectrum
Real Imaginary Real Imaginary Real Imaginary
Lag part part Lag part part Lag part part
0 -6.1563 0.0000 1 -5.5905 -2.0119 2 -3.2711 -2.7963
3 -1.1803 -2.3264 4 -0.2061 -1.8132 5 0.3434 -1.1357
6 0.6200 -0.7351 7 0.5967 -0.3449 8 0.4523 -0.0984
9 0.2391 0.0177 10 0.1129 0.0402 11 0.0564 0.0523
12 0.0134 0.0443 13 -0.0032 0.0299 14 -0.0057 0.0148
15 -0.0057 0.0069 16 -0.0033 0.0038 17 -0.0011 0.0012
18 -0.0004 0.0001 19 -0.0004 0.0002 20 -0.0003 0.0001
21 -0.0001 0.0002 22 -0.0002 0.0003 23 -0.0002 0.0002
24 -0.0002 0.0000 25 -0.0004 0.0000 26 -0.0002 -0.0002
27 -0.0001 -0.0000 28 -0.0001 0.0002 29 -0.0001 0.0002
30 -0.0002 0.0003 31 -0.0002 0.0001 32 -0.0001 0.0000
33 -0.0000 -0.0000 34 0.0000 -0.0001 35 0.0001 -0.0001
36 0.0001 -0.0001 37 0.0001 -0.0001 38 0.0000 -0.0001
39 0.0000 -0.0001 40 0.0001 0.0000
PDF version (NAG web site
, 64-bit version, 64-bit version)
© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015