PDF version (NAG web site
, 64-bit version, 64-bit version)
NAG Toolbox: nag_tsa_multi_spectrum_lag (g13cc)
Purpose
nag_tsa_multi_spectrum_lag (g13cc) calculates the smoothed sample cross spectrum of a bivariate time series using one of four lag windows: rectangular, Bartlett, Tukey or Parzen.
Syntax
[
cxy,
cyx,
xg,
yg,
ng,
ifail] = g13cc(
nxy,
mtxy,
pxy,
iw,
mw,
ish,
ic,
cxy,
cyx,
kc,
l, 'nc',
nc, 'xg',
xg, 'yg',
yg)
[
cxy,
cyx,
xg,
yg,
ng,
ifail] = nag_tsa_multi_spectrum_lag(
nxy,
mtxy,
pxy,
iw,
mw,
ish,
ic,
cxy,
cyx,
kc,
l, 'nc',
nc, 'xg',
xg, 'yg',
yg)
Description
The smoothed sample cross spectrum is a complex valued function of frequency
,
, defined by its real part or co-spectrum
and imaginary part or quadrature spectrum
where
, for
, is the smoothing lag window as defined in the description of
nag_tsa_uni_spectrum_lag (g13ca). The alignment shift
is recommended to be chosen as the lag
at which the cross-covariances
peak, so as to minimize bias.
The results are calculated for frequency values
where
denotes the integer part.
The cross-covariances
may be supplied by you, or constructed from supplied series
;
as
this convolution being carried out using the finite Fourier transform.
The supplied series may be mean and trend corrected and tapered before calculation of the cross-covariances, in exactly the manner described in
nag_tsa_uni_spectrum_lag (g13ca) for univariate spectrum estimation. The results are corrected for any bias due to tapering.
The bandwidth associated with the estimates is not returned. It will normally already have been calculated in previous calls of
nag_tsa_uni_spectrum_lag (g13ca) for estimating the univariate spectra of
and
.
References
Bloomfield P (1976) Fourier Analysis of Time Series: An Introduction Wiley
Jenkins G M and Watts D G (1968) Spectral Analysis and its Applications Holden–Day
Parameters
Compulsory Input Parameters
- 1:
– int64int32nag_int scalar
-
, the length of the time series and .
Constraint:
.
- 2:
– int64int32nag_int scalar
-
If cross-covariances are to be calculated by the function (
),
mtxy must specify whether the data is to be initially mean or trend corrected.
- For no correction.
- For mean correction.
- For trend correction.
If cross-covariances are supplied
,
mtxy is not used.
Constraint:
if , , or .
- 3:
– double scalar
-
If cross-covariances are to be calculated by the function (
),
pxy must specify the proportion of the data (totalled over both ends) to be initially tapered by the split cosine bell taper. A value of
implies no tapering.
If cross-covariances are supplied
,
pxy is not used.
Constraint:
if , .
- 4:
– int64int32nag_int scalar
-
The choice of lag window.
- Rectangular.
- Bartlett.
- Tukey.
- Parzen.
Constraint:
.
- 5:
– int64int32nag_int scalar
-
, the ‘cut-off’ point of the lag window, relative to any alignment shift that has been applied. Windowed cross-covariances at lags or less, and at lags or greater are zero.
- 6:
– int64int32nag_int scalar
-
, the alignment shift between the and series. If leads , the shift is positive.
Constraint:
.
- 7:
– int64int32nag_int scalar
-
Indicates whether cross-covariances are to be calculated in the function or supplied in the call to the function.
- Cross-covariances are to be calculated.
- Cross-covariances are to be supplied.
- 8:
– double array
-
If
,
cxy must contain the
nc cross-covariances between values in the
series and earlier values in time in the
series, for lags from
to
.
If
,
cxy need not be set.
- 9:
– double array
-
If
,
cyx must contain the
nc cross-covariances between values in the
series and later values in time in the
series, for lags from
to
.
If
,
cyx need not be set.
- 10:
– int64int32nag_int scalar
-
If
,
kc must specify the order of the fast Fourier transform (FFT) used to calculate the cross-covariances.
kc should be a product of small primes such as
where
is the smallest integer such that
.
If
, that is if covariances are supplied,
kc is not used.
Constraint:
. The largest prime factor of
kc must not exceed
, and the total number of prime factors of
kc, counting repetitions, must not exceed
. These two restrictions are imposed by the internal FFT algorithm used.
- 11:
– int64int32nag_int scalar
-
, the frequency division of the spectral estimates as
. Therefore it is also the order of the FFT used to construct the sample spectrum from the cross-covariances.
l should be a product of small primes such as
where
is the smallest integer such that
.
Constraint:
. The largest prime factor of
l must not exceed
, and the total number of prime factors of
l, counting repetitions, must not exceed
. These two restrictions are imposed by the internal FFT algorithm used.
Optional Input Parameters
- 1:
– int64int32nag_int scalar
-
Default:
the dimension of the arrays
cxy,
cyx. (An error is raised if these dimensions are not equal.)
The number of cross-covariances to be calculated in the function or supplied in the call to the function.
Constraint:
.
- 2:
– double array
-
If the cross-covariances are to be calculated, then
xg must contain the
nxy data points of the
series. If covariances are supplied,
xg need not be set.
- 3:
– double array
-
If cross-covariances are to be calculated,
yg must contain the
nxy data points of the
series. If covariances are supplied,
yg need not be set.
Output Parameters
- 1:
– double array
-
If
,
cxy will contain the
nc calculated cross-covariances.
If
, the contents of
cxy will be unchanged.
- 2:
– double array
-
If
,
cyx will contain the
nc calculated cross-covariances.
If
, the contents of
cyx will be unchanged.
- 3:
– double array
-
Contains the real parts of the
ng complex spectral estimates in elements
to
, and
to
contain
. The
series leads the
series.
- 4:
– double array
-
Contains the imaginary parts of the
ng complex spectral estimates in elements
to
, and
to
contain
. The
series leads the
series.
- 5:
– int64int32nag_int scalar
-
The number,
, of complex spectral estimates, whose separate parts are held in
xg and
yg.
- 6:
– int64int32nag_int scalar
unless the function detects an error (see
Error Indicators and Warnings).
Error Indicators and Warnings
Errors or warnings detected by the function:
-
-
On entry, | , |
or | and , |
or | and , |
or | and , |
or | and , |
or | , |
or | , |
or | , |
or | , |
or | , |
or | , |
or | , |
or | and , |
or | and . |
-
-
On entry, | , |
or | kc has a prime factor exceeding , |
or | kc has more than prime factors, counting repetitions. |
This error only occurs when .
-
-
On entry, | , |
or | l has a prime factor exceeding , |
or | l has more than prime factors, counting repetitions. |
-
An unexpected error has been triggered by this routine. Please
contact
NAG.
-
Your licence key may have expired or may not have been installed correctly.
-
Dynamic memory allocation failed.
Accuracy
The FFT is a numerically stable process, and any errors introduced during the computation will normally be insignificant compared with uncertainty in the data.
Further Comments
nag_tsa_multi_spectrum_lag (g13cc) carries out two FFTs of length
kc to calculate the sample cross-covariances and one FFT of length
to calculate the sample spectrum. The timing of
nag_tsa_multi_spectrum_lag (g13cc) is therefore dependent on the choice of these values. The time taken for an FFT of length
is approximately proportional to
(but see
Further Comments in
nag_sum_fft_realherm_1d (c06pa) for further details).
Example
This example reads two time series of length . It then selects mean correction, a 10% tapering proportion, the Parzen smoothing window and a cut-off point of for the lag window. The alignment shift is set to and cross-covariances are chosen to be calculated. The program then calls nag_tsa_multi_spectrum_lag (g13cc) to calculate the cross spectrum and then prints the cross-covariances and cross spectrum.
Open in the MATLAB editor:
g13cc_example
function g13cc_example
fprintf('g13cc example results\n\n');
nxy = int64(296);
ic = int64(0);
nc = 50;
mtxy = int64(1);
pxy = 0.1;
iw = int64(4);
mw = int64(35);
ish = int64(3);
kc = int64(350);
l = int64(80);
cxy = zeros(nc, 1);
cyx = zeros(nc, 1);
xg = zeros(kc, 1);
xg(1:nxy) = ...
[-0.109; 0.000; 0.178; 0.339; 0.373; 0.441; 0.461; 0.348; 0.127;-0.180;
-0.588;-1.055;-1.421;-1.520;-1.302;-0.814;-0.475;-0.193; 0.088; 0.435;
0.771; 0.866; 0.875; 0.891; 0.987; 1.263; 1.775; 1.976; 1.934; 1.866;
1.832; 1.767; 1.608; 1.265; 0.790; 0.360; 0.115; 0.088; 0.331; 0.645;
0.960; 1.409; 2.670; 2.834; 2.812; 2.483; 1.929; 1.485; 1.214; 1.239;
1.608; 1.905; 2.023; 1.815; 0.535; 0.122; 0.009; 0.164; 0.671; 1.019;
1.146; 1.155; 1.112; 1.121; 1.223; 1.257; 1.157; 0.913; 0.620; 0.255;
-0.280;-1.080;-1.551;-1.799;-1.825;-1.456;-0.944;-0.570;-0.431;-0.577;
-0.960;-1.616;-1.875;-1.891;-1.746;-1.474;-1.201;-0.927;-0.524; 0.040;
0.788; 0.943; 0.930; 1.006; 1.137; 1.198; 1.054; 0.595;-0.080;-0.314;
-0.288;-0.153;-0.109;-0.187;-0.255;-0.299;-0.007; 0.254; 0.330; 0.102;
-0.423;-1.139;-2.275;-2.594;-2.716;-2.510;-1.790;-1.346;-1.081;-0.910;
-0.876;-0.885;-0.800;-0.544;-0.416;-0.271; 0.000; 0.403; 0.841; 1.285;
1.607; 1.746; 1.683; 1.485; 0.993; 0.648; 0.577; 0.577; 0.632; 0.747;
0.999; 0.993; 0.968; 0.790; 0.399;-0.161;-0.553;-0.603;-0.424;-0.194;
-0.049; 0.060; 0.161; 0.301; 0.517; 0.566; 0.560; 0.573; 0.592; 0.671;
0.933; 1.337; 1.460; 1.353; 0.772; 0.218;-0.237;-0.714;-1.099;-1.269;
-1.175;-0.676; 0.033; 0.556; 0.643; 0.484; 0.109;-0.310;-0.697;-1.047;
-1.218;-1.183;-0.873;-0.336; 0.063; 0.084; 0.000; 0.001; 0.209; 0.556;
0.782; 0.858; 0.918; 0.862; 0.416;-0.336;-0.959;-1.813;-2.378;-2.499;
-2.473;-2.330;-2.053;-1.739;-1.261;-0.569;-0.137;-0.024;-0.050;-0.135;
-0.276;-0.534;-0.871;-1.243;-1.439;-1.422;-1.175;-0.813;-0.634;-0.582;
-0.625;-0.713;-0.848;-1.039;-1.346;-1.628;-1.619;-1.149;-0.488;-0.160;
-0.007;-0.092;-0.620;-1.086;-1.525;-1.858;-2.029;-2.024;-1.961;-1.952;
-1.794;-1.302;-1.030;-0.918;-0.798;-0.867;-1.047;-1.123;-0.876;-0.395;
0.185; 0.662; 0.709; 0.605; 0.501; 0.603; 0.943; 1.223; 1.249; 0.824;
0.102; 0.025; 0.382; 0.922; 1.032; 0.866; 0.527; 0.093;-0.458;-0.748;
-0.947;-1.029;-0.928;-0.645;-0.424;-0.276;-0.158;-0.033; 0.102; 0.251;
0.280; 0.000;-0.493;-0.759;-0.824;-0.740;-0.528;-0.204; 0.034; 0.204;
0.253; 0.195; 0.131; 0.017;-0.182;-0.262];
yg = zeros(kc, 1);
yg(1:nxy) = ...
[53.8; 53.6; 53.5; 53.5; 53.4; 53.1; 52.7; 52.4; 52.2; 52.0; 52.0; 52.4;
53.0; 54.0; 54.9; 56.0; 56.8; 56.8; 56.4; 55.7; 55.0; 54.3; 53.2; 52.3;
51.6; 51.2; 50.8; 50.5; 50.0; 49.2; 48.4; 47.9; 47.6; 47.5; 47.5; 47.6;
48.1; 49.0; 50.0; 51.1; 51.8; 51.9; 51.7; 51.2; 50.0; 48.3; 47.0; 45.8;
45.6; 46.0; 46.9; 47.8; 48.2; 48.3; 47.9; 47.2; 47.2; 48.1; 49.4; 50.6;
51.5; 51.6; 51.2; 50.5; 50.1; 49.8; 49.6; 49.4; 49.3; 49.2; 49.3; 49.7;
50.3; 51.3; 52.8; 54.4; 56.0; 56.9; 57.5; 57.3; 56.6; 56.0; 55.4; 55.4;
56.4; 57.2; 58.0; 58.4; 58.4; 58.1; 57.7; 57.0; 56.0; 54.7; 53.2; 52.1;
51.6; 51.0; 50.5; 50.4; 51.0; 51.8; 52.4; 53.0; 53.4; 53.6; 53.7; 53.8;
53.8; 53.8; 53.3; 53.0; 52.9; 53.4; 54.6; 56.4; 58.0; 59.4; 60.2; 60.0;
59.4; 58.4; 57.6; 56.9; 56.4; 56.0; 55.7; 55.3; 55.0; 54.4; 53.7; 52.8;
51.6; 50.6; 49.4; 48.8; 48.5; 48.7; 49.2; 49.8; 50.4; 50.7; 50.9; 50.7;
50.5; 50.4; 50.2; 50.4; 51.2; 52.3; 53.2; 53.9; 54.1; 54.0; 53.6; 53.2;
53.0; 52.8; 52.3; 51.9; 51.6; 51.6; 51.4; 51.2; 50.7; 50.0; 49.4; 49.3;
49.7; 50.6; 51.8; 53.0; 54.0; 55.3; 55.9; 55.9; 54.6; 53.5; 52.4; 52.1;
52.3; 53.0; 53.8; 54.6; 55.4; 55.9; 55.9; 55.2; 54.4; 53.7; 53.6; 53.6;
53.2; 52.5; 52.0; 51.4; 51.0; 50.9; 52.4; 53.5; 55.6; 58.0; 59.5; 60.0;
60.4; 60.5; 60.2; 59.7; 59.0; 57.6; 56.4; 55.2; 54.5; 54.1; 54.1; 54.4;
55.5; 56.2; 57.0; 57.3; 57.4; 57.0; 56.4; 55.9; 55.5; 55.3; 55.2; 55.4;
56.0; 56.5; 57.1; 57.3; 56.8; 55.6; 55.0; 54.1; 54.3; 55.3; 56.4; 57.2;
57.8; 58.3; 58.6; 58.8; 58.8; 58.6; 58.0; 57.4; 57.0; 56.4; 56.3; 56.4;
56.4; 56.0; 55.2; 54.0; 53.0; 52.0; 51.6; 51.6; 51.1; 50.4; 50.0; 50.0;
52.0; 54.0; 55.1; 54.5; 52.8; 51.4; 50.8; 51.2; 52.0; 52.8; 53.8; 54.5;
54.9; 54.9; 54.8; 54.4; 53.7; 53.3; 52.8; 52.6; 52.6; 53.0; 54.3; 56.0;
57.0; 58.0; 58.6; 58.5; 58.3; 57.8; 57.3; 57];
[cxy, cyx, xg, yg, ng, ifail] = ...
g13cc( ...
nxy, mtxy, pxy, iw, mw, ish, ic, cxy, cyx, kc, l, 'xg', xg, 'yg', yg);
fprintf(' Returned cross covariances\n\n');
fprintf(' Lag XY YX Lag XY YX Lag XY YX\n');
result = [double([0:nc-1]); cxy'; cyx'];
for j = 1:3:nc
fprintf('%4d%9.4f%9.4f', result(:,j:min(j+2,nc)));
fprintf('\n');
end
fprintf('\n Returned sample spectrum\n\n');
fprintf('%23s%22s%22s\n', 'Real Imaginary', 'Real Imaginary', ...
'Real Imaginary');
fprintf('%21s%22s%22s\n', 'Lag part part', ' Lag part part', ...
' Lag part part');
result = [double([0:ng-1]); xg(1:ng)'; yg(1:ng)'];
for j = 1:3:ng
fprintf('%4d%9.4f%9.4f', result(:,j:min(j+2,ng)));
fprintf('\n');
end
g13cc example results
Returned cross covariances
Lag XY YX Lag XY YX Lag XY YX
0 -1.6700 -1.6700 1 -2.0581 -1.3606 2 -2.4859 -1.1383
3 -2.8793 -0.9926 4 -3.1473 -0.9009 5 -3.2239 -0.8382
6 -3.0929 -0.7804 7 -2.7974 -0.7074 8 -2.4145 -0.6147
9 -2.0237 -0.5080 10 -1.6802 -0.4032 11 -1.4065 -0.3159
12 -1.2049 -0.2554 13 -1.0655 -0.2250 14 -0.9726 -0.2238
15 -0.9117 -0.2454 16 -0.8658 -0.2784 17 -0.8180 -0.3081
18 -0.7563 -0.3257 19 -0.6750 -0.3315 20 -0.5754 -0.3321
21 -0.4701 -0.3308 22 -0.3738 -0.3312 23 -0.3023 -0.3332
24 -0.2665 -0.3384 25 -0.2645 -0.3506 26 -0.2847 -0.3727
27 -0.3103 -0.3992 28 -0.3263 -0.4152 29 -0.3271 -0.4044
30 -0.3119 -0.3621 31 -0.2837 -0.2919 32 -0.2568 -0.2054
33 -0.2427 -0.1185 34 -0.2490 -0.0414 35 -0.2774 0.0227
36 -0.3218 0.0697 37 -0.3705 0.1039 38 -0.4083 0.1356
39 -0.4197 0.1805 40 -0.3920 0.2460 41 -0.3241 0.3319
42 -0.2273 0.4325 43 -0.1216 0.5331 44 -0.0245 0.6199
45 0.0528 0.6875 46 0.1074 0.7329 47 0.1448 0.7550
48 0.1713 0.7544 49 0.1943 0.7349
Returned sample spectrum
Real Imaginary Real Imaginary Real Imaginary
Lag part part Lag part part Lag part part
0 -6.5500 0.0000 1 -5.4267 -1.9842 2 -3.1323 -2.7307
3 -1.2649 -2.3998 4 -0.2102 -1.7520 5 0.3411 -1.1903
6 0.6063 -0.7420 7 0.6178 -0.3586 8 0.4391 -0.1008
9 0.2422 0.0061 10 0.1233 0.0409 11 0.0574 0.0529
12 0.0174 0.0452 13 -0.0008 0.0289 14 -0.0058 0.0161
15 -0.0051 0.0084 16 -0.0027 0.0040 17 -0.0010 0.0015
18 -0.0006 0.0006 19 -0.0005 0.0003 20 -0.0003 0.0003
21 -0.0003 0.0004 22 -0.0003 0.0003 23 -0.0003 0.0002
24 -0.0004 0.0001 25 -0.0004 -0.0000 26 -0.0003 -0.0001
27 -0.0002 -0.0001 28 -0.0001 0.0001 29 -0.0002 0.0003
30 -0.0003 0.0002 31 -0.0002 0.0001 32 -0.0001 0.0000
33 -0.0000 -0.0000 34 0.0001 -0.0001 35 0.0001 -0.0002
36 0.0001 -0.0001 37 0.0001 -0.0001 38 0.0001 -0.0001
39 0.0001 -0.0001 40 0.0001 0.0000
PDF version (NAG web site
, 64-bit version, 64-bit version)
© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015