hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_tsa_multi_xcorr (g13bc)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_tsa_multi_xcorr (g13bc) calculates cross-correlations between two time series.

Syntax

[s, r0, r, stat, ifail] = g13bc(x, y, nl, 'nxy', nxy)
[s, r0, r, stat, ifail] = nag_tsa_multi_xcorr(x, y, nl, 'nxy', nxy)

Description

Given two series x1,x2,,xn and y1,y2,,yn the function calculates the cross-correlations between xt and lagged values of yt:
rxyl=t=1 n-lxt-x-yt+l-y- nsxsy ,  l=0,1,,L  
where
x-=t= 1nxtn  
sx2=t=1n xt-x- 2n  
and similarly for y.
The ratio of standard deviations sy/sx is also returned, and a portmanteau statistic is calculated:
stat=nl=1Lrxy l 2.  
Provided n is large, L much less than n, and both xt,yt are samples of series whose true autocorrelation functions are zero, then, under the null hypothesis that the true cross-correlations between the series are zero, stat has a χ2-distribution with L degrees of freedom. Values of stat in the upper tail of this distribution provide evidence against the null hypothesis.

References

Box G E P and Jenkins G M (1976) Time Series Analysis: Forecasting and Control (Revised Edition) Holden–Day

Parameters

Compulsory Input Parameters

1:     xnxy – double array
The n values of the x series.
2:     ynxy – double array
The n values of the y series.
3:     nl int64int32nag_int scalar
L, the maximum lag for calculating cross-correlations.
Constraint: 1nl<nxy.

Optional Input Parameters

1:     nxy int64int32nag_int scalar
Default: the dimension of the arrays x, y. (An error is raised if these dimensions are not equal.)
n, the length of the time series.
Constraint: nxy2.

Output Parameters

1:     s – double scalar
The ratio of the standard deviation of the y series to the standard deviation of the x series, sy/sx.
2:     r0 – double scalar
The cross-correlation between the x and y series at lag zero.
3:     rnl – double array
rl contains the cross-correlations between the x and y series at lags L, rxyl, for l=1,2,,L.
4:     stat – double scalar
The statistic for testing for absence of cross-correlation.
5:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:
   ifail=1
On entry,nxy1,
ornl<1,
ornlnxy.
   ifail=2
One or both of the x and y series have zero variance and hence cross-correlations cannot be calculated.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

All computations are believed to be stable.

Further Comments

If n<100, or L<10logn then the autocorrelations are calculated directly and the time taken by nag_tsa_multi_xcorr (g13bc) is approximately proportional to nL, otherwise the autocorrelations are calculated by utilizing fast Fourier transforms (FFTs) and the time taken is approximately proportional to nlogn. If FFTs are used then nag_tsa_multi_xcorr (g13bc) internally allocates approximately 6n real elements.

Example

This example reads two time series of length 20. It calculates and prints the cross-correlations up to lag 15 for the first series leading the second series and then for the second series leading the first series.
function g13bc_example


fprintf('g13bc example results\n\n');

% Series
x = [0.02;  0.05;  0.08;  0.03; -0.05;  0.11; -0.01; -0.08; -0.08; -0.11;
    -0.18; -0.19; -0.09;  0.03;  0.10;  0.15; -0.14;  0.07;  0.09;  0.16];
y = [3.18;  3.21;  3.26;  3.25;  3.08;  3.01;  3.06;  3.17;  3.12;  3.04;
     3.26;  3.45;  3.33;  3.70;  3.31;  3.81;  3.33;  2.96;  3.28;  3.10];

% Number of lags
nl = int64(15);

% Cross correlations between x and y
[sxy, r0xy, rxy, statxy, ifail] = g13bc( ...
                                 x, y, nl);
% Cross correlations between y and x
[syx, r0yx, ryx, statyx, ifail] = g13bc( ...
                                 y, x, nl);

% Display results
fprintf('%34s%15s\n', 'Between', 'Between');
fprintf('%34s%15s\n', 'x and y', 'y and x');
fmt1 = '\n%24s%10.4f%15.4f\n';
fprintf(fmt1, 'Standard deviation ratio', sxy, syx);
fprintf('\nCross correlation at lag');
fprintf(fmt1, '0', r0xy, r0yx);
ivar = double([1:nl]');
fprintf('%24d%10.4f%15.4f\n', [ivar rxy ryx]')
fprintf(fmt1,'Test statistic          ', statxy, statyx);


g13bc example results

                           Between        Between
                           x and y        y and x

Standard deviation ratio    2.0053         0.4987

Cross correlation at lag
                       0    0.0568         0.0568
                       1    0.0438        -0.0151
                       2   -0.3762         0.3955
                       3   -0.4864         0.3417
                       4   -0.6294         0.5486
                       5   -0.3871         0.2291
                       6   -0.1690         0.3190
                       7   -0.0678         0.1980
                       8    0.0962         0.0438
                       9    0.0788        -0.1428
                      10    0.2910        -0.1376
                      11    0.0950        -0.0387
                      12    0.0547        -0.0380
                      13    0.1855        -0.1551
                      14    0.0243        -0.1536
                      15    0.0034        -0.0696

Test statistic             22.1269        17.2917

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015