hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_rand_dist_vonmises (g05sr)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_rand_dist_vonmises (g05sr) generates a vector of pseudorandom numbers from a von Mises distribution with concentration parameter κ.

Syntax

[state, x, ifail] = g05sr(n, vk, state)
[state, x, ifail] = nag_rand_dist_vonmises(n, vk, state)

Description

The von Mises distribution is a symmetric distribution used in the analysis of circular data. The PDF (probability density function) of this distribution on the circle with mean direction μ0=0 and concentration parameter κ, can be written as:
fθ= eκcosθ 2πI0κ ,  
where θ is reduced modulo 2π so that -πθ<π and κ0. For very small κ the distribution is almost the uniform distribution, whereas for κ all the probability is concentrated at one point.
The n variates, θ1,θ2,,θn, are generated using an envelope rejection method with a wrapped Cauchy target distribution as proposed by Best and Fisher (1979) and described by Dagpunar (1988).
One of the initialization functions nag_rand_init_repeat (g05kf) (for a repeatable sequence if computed sequentially) or nag_rand_init_nonrepeat (g05kg) (for a non-repeatable sequence) must be called prior to the first call to nag_rand_dist_vonmises (g05sr).

References

Best D J and Fisher N I (1979) Efficient simulation of the von Mises distribution Appl. Statist. 28 152–157
Dagpunar J (1988) Principles of Random Variate Generation Oxford University Press
Mardia K V (1972) Statistics of Directional Data Academic Press

Parameters

Compulsory Input Parameters

1:     n int64int32nag_int scalar
n, the number of pseudorandom numbers to be generated.
Constraint: n0.
2:     vk – double scalar
κ, the concentration parameter of the required von Mises distribution.
Constraint: 0.0<vkx02al/2.0.
3:     state: int64int32nag_int array
Note: the actual argument supplied must be the array state supplied to the initialization routines nag_rand_init_repeat (g05kf) or nag_rand_init_nonrepeat (g05kg).
Contains information on the selected base generator and its current state.

Optional Input Parameters

None.

Output Parameters

1:     state: int64int32nag_int array
Contains updated information on the state of the generator.
2:     xn – double array
The n pseudorandom numbers from the specified von Mises distribution.
3:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:
   ifail=1
Constraint: n0.
   ifail=2
On entry, vk0.0 or vk too large:
   ifail=3
On entry, state vector has been corrupted or not initialized.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

Not applicable.

Further Comments

For a given number of random variates the generation time increases slightly with increasing κ.

Example

This example prints the first five pseudorandom numbers from a von Mises distribution with κ=1.0, generated by a single call to nag_rand_dist_vonmises (g05sr), after initialization by nag_rand_init_repeat (g05kf).
function g05sr_example


fprintf('g05sr example results\n\n');

% Initialize the base generator to a repeatable sequence
seed  = [int64(1762543)];
genid = int64(1);
subid = int64(1);
[state, ifail] = g05kf( ...
                        genid, subid, seed);

% Number of variates
n = int64(5);

% Parameters
vk = 1;

% Generate variates from von Mises distribution
[state, x, ifail] = g05sr( ...
                           n, vk, state);

disp('Variates');
disp(x);


g05sr example results

Variates
    1.2947
   -1.9542
   -0.6464
   -1.4172
    1.2536


PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015