hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_rand_dist_gamma (g05sj)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_rand_dist_gamma (g05sj) generates a vector of pseudorandom numbers taken from a gamma distribution with parameters a and b.

Syntax

[state, x, ifail] = g05sj(n, a, b, state)
[state, x, ifail] = nag_rand_dist_gamma(n, a, b, state)

Description

The gamma distribution has PDF (probability density function)
fx= 1baΓa xa-1e-x/b if ​x0;  a,b>0 fx=0 otherwise.  
One of three algorithms is used to generate the variates depending upon the value of a:
(i) if a<1, a switching algorithm described by Dagpunar (1988) (called G6) is used. The target distributions are f1x=caxa-1/ta and f2x=1-ce-x-t, where c=t/t+ae-t, and the switching argument, t, is taken as 1-a. This is similar to Ahrens and Dieter's GS algorithm (see Ahrens and Dieter (1974)) in which t=1;
(ii) if a=1, the gamma distribution reduces to the exponential distribution and the method based on the logarithmic transformation of a uniform random variate is used;
(iii) if a>1, the algorithm given by Best (1978) is used. This is based on using a Student's t-distribution with two degrees of freedom as the target distribution in an envelope rejection method.
One of the initialization functions nag_rand_init_repeat (g05kf) (for a repeatable sequence if computed sequentially) or nag_rand_init_nonrepeat (g05kg) (for a non-repeatable sequence) must be called prior to the first call to nag_rand_dist_gamma (g05sj).

References

Ahrens J H and Dieter U (1974) Computer methods for sampling from gamma, beta, Poisson and binomial distributions Computing 12 223–46
Best D J (1978) Letter to the Editor Appl. Statist. 27 181
Dagpunar J (1988) Principles of Random Variate Generation Oxford University Press
Hastings N A J and Peacock J B (1975) Statistical Distributions Butterworth

Parameters

Compulsory Input Parameters

1:     n int64int32nag_int scalar
n, the number of pseudorandom numbers to be generated.
Constraint: n0.
2:     a – double scalar
a, the parameter of the gamma distribution.
Constraint: a>0.0.
3:     b – double scalar
b, the parameter of the gamma distribution.
Constraint: b>0.0.
4:     state: int64int32nag_int array
Note: the actual argument supplied must be the array state supplied to the initialization routines nag_rand_init_repeat (g05kf) or nag_rand_init_nonrepeat (g05kg).
Contains information on the selected base generator and its current state.

Optional Input Parameters

None.

Output Parameters

1:     state: int64int32nag_int array
Contains updated information on the state of the generator.
2:     xn – double array
The n pseudorandom numbers from the specified gamma distribution.
3:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:
   ifail=1
Constraint: n0.
   ifail=2
Constraint: a>0.0.
   ifail=3
Constraint: b>0.0.
   ifail=4
On entry, state vector has been corrupted or not initialized.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

Not applicable.

Further Comments

None.

Example

This example prints a set of five pseudorandom numbers from a gamma distribution with parameters a=5.0 and b=1.0, generated by a single call to nag_rand_dist_gamma (g05sj), after initialization by nag_rand_init_repeat (g05kf).
function g05sj_example


fprintf('g05sj example results\n\n');

% Initialize the base generator to a repeatable sequence
seed  = [int64(1762543)];
genid = int64(1);
subid = int64(1);
[state, ifail] = g05kf( ...
                        genid, subid, seed);

% Number of variates
n = int64(5);

% Parameters
a = 5;
b = 1;

% Generate variates from Gamma distribution
[state, x, ifail] = g05sj( ...
                           n, a, b, state);

disp('Variates');
disp(x);


g05sj example results

Variates
    5.0702
    6.1337
    3.1018
    3.9863
    4.9648


PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015