hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_rand_matrix_corr (g05py)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_rand_matrix_corr (g05py) generates a random correlation matrix with given eigenvalues.

Syntax

[state, c, ifail] = g05py(d, state, 'n', n, 'eps', eps)
[state, c, ifail] = nag_rand_matrix_corr(d, state, 'n', n, 'eps', eps)

Description

Given n eigenvalues, λ1,λ2,,λn, such that
i=1nλi=n  
and
λi 0,   i= 1,2,,n,  
nag_rand_matrix_corr (g05py) will generate a random correlation matrix, C, of dimension n, with eigenvalues λ1,λ2,,λn.
The method used is based on that described by Lin and Bendel (1985). Let D be the diagonal matrix with values λ1,λ2,,λn and let A be a random orthogonal matrix generated by nag_rand_matrix_orthog (g05px) then the matrix C0=A D AT is a random covariance matrix with eigenvalues λ1,λ2,,λn. The matrix C0 is transformed into a correlation matrix by means of n-1 elementary rotation matrices Pi such that C = Pn-1 Pn-2 P1 C0 P1T Pn-2T Pn-1T . The restriction on the sum of eigenvalues implies that for any diagonal element of C0>1, there is another diagonal element <1. The Pi are constructed from such pairs, chosen at random, to produce a unit diagonal element corresponding to the first element. This is repeated until all diagonal elements are 1 to within a given tolerance ε.
The randomness of C should be interpreted only to the extent that A is a random orthogonal matrix and C is computed from A using the Pi which are chosen as arbitrarily as possible.
One of the initialization functions nag_rand_init_repeat (g05kf) (for a repeatable sequence if computed sequentially) or nag_rand_init_nonrepeat (g05kg) (for a non-repeatable sequence) must be called prior to the first call to nag_rand_matrix_corr (g05py).

References

Lin S P and Bendel R B (1985) Algorithm AS 213: Generation of population correlation on matrices with specified eigenvalues Appl. Statist. 34 193–198

Parameters

Compulsory Input Parameters

1:     dn – double array
The n eigenvalues, λi, for i=1,2,,n.
Constraints:
  • di0.0, for i=1,2,,n;
  • i=1ndi=n to within eps.
2:     state: int64int32nag_int array
Note: the actual argument supplied must be the array state supplied to the initialization routines nag_rand_init_repeat (g05kf) or nag_rand_init_nonrepeat (g05kg).
Contains information on the selected base generator and its current state.

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the dimension of the array d.
n, the dimension of the correlation matrix to be generated.
Constraint: n1.
2:     eps – double scalar
Default: 0.00001
The maximum acceptable error in the diagonal elements.
Constraint: epsn×machine precision (see Chapter X02).

Output Parameters

1:     state: int64int32nag_int array
Contains updated information on the state of the generator.
2:     cldcn – double array
A random correlation matrix, C, of dimension n.
3:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:
   ifail=1
Constraint: n1.
   ifail=2
On entry, an eigenvalue is negative.
On entry, the eigenvalues do not sum to n.
   ifail=3
Constraint: epsn×machine precision.
   ifail=4
On entry, state vector has been corrupted or not initialized.
   ifail=5
The diagonals of the returned matrix are not unity, try increasing the value of eps, or rerun the code using a different seed.
   ifail=6
Constraint: ldcn.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

The maximum error in a diagonal element is given by eps.

Further Comments

The time taken by nag_rand_matrix_corr (g05py) is approximately proportional to n2.

Example

Following initialization of the pseudorandom number generator by a call to nag_rand_init_repeat (g05kf), a 3 by 3 correlation matrix with eigenvalues of 0.7, 0.9 and 1.4 is generated and printed.
function g05py_example


fprintf('g05py example results\n\n');

% Initialize the base generator to a repeatable sequence
seed  = [int64(1762543)];
genid = int64(1);
subid = int64(1);
[state, ifail] = g05kf( ...
                        genid, subid, seed);

% Eigenvalues
d = [0.7; 0.9; 1.4];

% Generate the correlation matrix with eigenvalues d
[state, c, ifail] = g05py( ...
                           d, state);

disp('Correlation Matrix');
disp(c);


g05py example results

Correlation Matrix
    1.0000   -0.2549   -0.1004
   -0.2549    1.0000    0.2343
   -0.1004    0.2343    1.0000


PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015