[iopts, opts, ifail] = g02zk('Initialize = g02qg', iopts, opts);
Open in the MATLAB editor: g02zk_example
function g02zk_example fprintf('g02zk example results\n\n'); sorder = int64(1); c1 = 'y'; weight = 'u'; dat = [ 420.1577; 541.4117; 901.1575; 639.0802; 750.8756; 945.7989; 829.3979; 979.1648; 1309.8789; 1492.3987; 502.8390; 616.7168; 790.9225; 555.8786; 713.4412; 838.7561; 535.0766; 596.4408; 924.5619; 487.7583; 692.6397; 997.8770; 506.9995; 654.1587; 933.9193; 433.6813; 587.5962; 896.4746; 454.4782; 584.9989; 800.7990; 502.4369; 713.5197; 906.0006; 880.5969; 796.8289; 854.8791; 1167.3716; 523.8000; 670.7792; 377.0584; 851.5430; 1121.0937; 625.5179; 805.5377; 558.5812; 884.4005; 1257.4989; 2051.1789; 1466.3330; 730.0989; 2432.3910; 940.9218; 1177.8547; 1222.5939; 1519.5811; 687.6638; 953.1192; 953.1192; 953.1192; 939.0418; 1283.4025; 1511.5789; 1342.5821; 511.7980; 689.7988; 1532.3074; 1056.0808; 387.3195; 387.3195; 410.9987; 499.7510; 832.7554; 614.9986; 887.4658; 1595.1611; 1807.9520; 541.2006; 1057.6767; 800.7990; 1245.6964; 1201.0002; 634.4002; 956.2315; 1148.6010; 1768.8236; 2822.5330; 922.3548; 2293.1920; 627.4726; 889.9809; 1162.2000; 1197.0794; 530.7972; 1142.1526; 1088.0039; 484.6612; 1536.0201; 678.8974; 671.8802; 690.4683; 860.6948; 873.3095; 894.4598; 1148.6470; 926.8762; 839.0414; 829.4974; 1264.0043; 1937.9771; 698.8317; 920.4199; 1897.5711; 891.6824; 889.6784; 1221.4818; 544.5991; 1031.4491; 1462.9497; 830.4353; 975.0415; 1337.9983; 867.6427; 725.7459; 989.0056; 1525.0005; 672.1960; 923.3977; 472.3215; 590.7601; 831.7983; 1139.4945; 507.5169; 576.1972; 696.5991; 650.8180; 949.5802; 497.1193; 570.1674; 724.7306; 408.3399; 638.6713; 1225.7890; 715.3701; 800.4708; 975.5974; 1613.7565; 608.5019; 958.6634; 835.9426; 1024.8177; 1006.4353; 726.0000; 494.4174; 776.5958; 415.4407; 581.3599; 643.3571; 2551.6615; 1795.3226; 1165.7734; 815.6212; 1264.2066; 1095.4056; 447.4479; 1178.9742; 975.8023; 1017.8522; 423.8798; 558.7767; 943.2487; 1348.3002; 2340.6174; 587.1792; 1540.9741; 1115.8481; 1044.6843; 1389.7929; 2497.7860; 1585.3809; 1862.0438; 2008.8546; 697.3099; 571.2517; 598.3465; 461.0977; 977.1107; 883.9849; 718.3594; 543.8971; 1587.3480; 4957.8130; 969.6838; 419.9980; 561.9990; 689.5988; 1398.5203; 820.8168; 875.1716; 1392.4499; 1256.3174; 1362.8590; 1999.2552; 1209.4730; 1125.0356; 1827.4010; 1014.1540; 880.3944; 873.7375; 951.4432; 473.0022; 601.0030; 713.9979; 829.2984; 959.7953; 1212.9613; 958.8743; 1129.4431; 1943.0419; 539.6388; 463.5990; 562.6400; 736.7584; 1415.4461; 2208.7897; 636.0009; 759.4010; 1078.8382; 748.6413; 987.6417; 788.0961; 1020.0225; 1230.9235; 440.5174; 743.0772]; y = [ 255.8394; 310.9587; 485.6800; 402.9974; 495.5608; 633.7978; 630.7566; 700.4409; 830.9586; 815.3602; 338.0014; 412.3613; 520.0006; 452.4015; 512.7201; 658.8395; 392.5995; 443.5586; 640.1164; 333.8394; 466.9583; 543.3969; 317.7198; 424.3209; 518.9617; 338.0014; 419.6412; 476.3200; 386.3602; 423.2783; 503.3572; 354.6389; 497.3182; 588.5195; 654.5971; 550.7274; 528.3770; 640.4813; 401.3204; 435.9990; 276.5606; 588.3488; 664.1978; 444.8602; 462.8995; 377.7792; 553.1504; 810.8962; 1067.9541; 1049.8788; 522.7012; 1424.8047; 517.9196; 830.9586; 925.5795; 1162.0024; 383.4580; 621.1173; 621.1173; 621.1173; 548.6002; 745.2353; 837.8005; 795.3402; 418.5976; 508.7974; 883.2780; 742.5276; 242.3202; 242.3202; 266.0010; 408.4992; 614.7588; 385.3184; 515.6200; 1138.1620; 993.9630; 299.1993; 750.3202; 572.0807; 907.3969; 811.5776; 427.7975; 649.9985; 860.6002; 1143.4211; 2032.6792; 590.6183; 1570.3911; 483.4800; 600.4804; 696.2021; 774.7962; 390.5984; 612.5619; 708.7622; 296.9192; 1071.4627; 496.5976; 503.3974; 357.6411; 430.3376; 624.6990; 582.5413; 580.2215; 543.8807; 588.6372; 627.9999; 712.1012; 968.3949; 482.5816; 593.1694; 1033.5658; 693.6795; 693.6795; 761.2791; 361.3981; 628.4522; 771.4486; 757.1187; 821.5970; 1022.3202; 679.4407; 538.7491; 679.9981; 977.0033; 561.2015; 728.3997; 372.3186; 361.5210; 620.8006; 819.9964; 360.8780; 395.7608; 442.0001; 404.0384; 670.7993; 297.5702; 353.4882; 383.9376; 284.8008; 431.1000; 801.3518; 448.4513; 577.9111; 570.5210; 865.3205; 444.5578; 680.4198; 576.2779; 708.4787; 734.2356; 433.0010; 327.4188; 485.5198; 305.4390; 468.0008; 459.8177; 863.9199; 831.4407; 534.7610; 392.0502; 934.9752; 813.3081; 263.7100; 769.0838; 630.5863; 645.9874; 319.5584; 348.4518; 614.5068; 662.0096; 1504.3708; 406.2180; 692.1689; 588.1371; 511.2609; 700.5600; 1301.1451; 879.0660; 912.8851; 1509.7812; 484.0605; 399.6703; 444.1001; 248.8101; 527.8014; 500.6313; 436.8107; 374.7990; 726.3921; 1827.2000; 523.4911; 334.9998; 473.2009; 581.2029; 929.7540; 591.1974; 637.5483; 674.9509; 776.7589; 959.5170; 1250.9643; 737.8201; 810.6772; 983.0009; 708.8968; 633.1200; 631.7982; 608.6419; 300.9999; 377.9984; 397.0015; 588.5195; 681.7616; 807.3603; 696.8011; 811.1962; 1305.7201; 442.0001; 353.6013; 468.0008; 526.7573; 890.2390; 1318.8033; 331.0005; 416.4015; 596.8406; 429.0399; 619.6408; 400.7990; 775.0209; 772.7611; 306.5191; 522.6019]; isx = [int64(1)]; tau = [0.10; 0.25; 0.50; 0.75; 0.90]; state = zeros(1, 1, 'int64'); ip = 2; b = zeros(2, 5); iopts = zeros(100, 1, 'int64'); opts = zeros(100, 1); % Initialize the optional argument array [iopts, opts, ifail] = g02zk( ... 'Initialize = g02qg', iopts, opts); % Set optional arguments [iopts, opts, ifail] = g02zk( ... 'Return Residuals = Yes', iopts, opts); [iopts, opts, ifail] = g02zk( ... 'Matrix Returned = Covariance', iopts, opts); [iopts, opts, ifail] = g02zk( ... 'Interval Method = IID', iopts, opts); % Call the model fitting routine [df, b, bl, bu, ch, res, state, info, ifail] = ... g02qg( ... sorder, c1, weight, dat, isx, y, tau, b, iopts, opts, state); if (ifail == 0) % Display the parameter estimates for l=1:numel(tau) fprintf('\nQuantile: %6.3f\n\n', tau(l)); fprintf(' Lower Parameter Upper\n'); fprintf(' Limit Estimate Limit\n'); for j=1:2 fprintf('%3d %7.3f %7.3f %7.3f\n', j, bl(j,l), b(j,l), bu(j,l)); end fprintf('\nCovariance matrix\n'); for i=1:ip fprintf('%10.3e ', ch(1:i, i, l)); fprintf('\n'); end fprintf('\n'); end if (numel(res) > 0) fprintf('First 10 Residuals\n'); fprintf(' Quantile\n'); fprintf('Obs. %6.3f %6.3f %6.3f %6.3f %6.3f\n', tau); for i=1:10 fprintf(' %3d %10.5f %10.5f %10.5f %10.5f %10.5f\n', i, res(i, 1:5)); end else fprintf('Residuals not returned\n'); end elseif (ifail == 231) fprintf('\nAdditional error information (info):\n'); disp(info); end
g02zk example results Quantile: 0.100 Lower Parameter Upper Limit Estimate Limit 1 74.946 110.142 145.337 2 0.370 0.402 0.433 Covariance matrix 3.191e+02 -2.541e-01 2.587e-04 Quantile: 0.250 Lower Parameter Upper Limit Estimate Limit 1 64.232 95.483 126.735 2 0.446 0.474 0.502 Covariance matrix 2.516e+02 -2.004e-01 2.039e-04 Quantile: 0.500 Lower Parameter Upper Limit Estimate Limit 1 55.399 81.482 107.566 2 0.537 0.560 0.584 Covariance matrix 1.753e+02 -1.396e-01 1.421e-04 Quantile: 0.750 Lower Parameter Upper Limit Estimate Limit 1 41.372 62.396 83.421 2 0.625 0.644 0.663 Covariance matrix 1.139e+02 -9.068e-02 9.230e-05 Quantile: 0.900 Lower Parameter Upper Limit Estimate Limit 1 26.829 67.351 107.873 2 0.650 0.686 0.723 Covariance matrix 4.230e+02 -3.369e-01 3.429e-04 First 10 Residuals Quantile Obs. 0.100 0.250 0.500 0.750 0.900 1 -23.10718 -38.84219 -61.00711 -77.14462 -99.86551 2 -16.70358 -41.20981 -73.81193 -100.11463 -127.96277 3 13.48419 -37.04518 -100.61322 -157.07478 -200.13481 4 36.09526 4.52393 -36.48522 -70.97584 -102.95390 5 83.74310 44.08476 -6.54743 -50.41028 -87.11562 6 143.66660 89.90799 22.49734 -37.70668 -82.65437 7 187.39134 142.05288 84.66171 34.21603 -5.80963 8 196.90443 140.73220 70.44951 7.44831 -38.91027 9 194.55254 114.45726 15.70761 -75.01861 -135.36147 10 105.62394 12.32563 -102.13482 -208.16238 -276.22311