hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_correg_coeffs_zero (g02bd)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_correg_coeffs_zero (g02bd) computes means and standard deviations of variables, sums of squares and cross-products about zero, and correlation-like coefficients for a set of data.

Syntax

[xbar, std, sspz, rz, ifail] = g02bd(x, 'n', n, 'm', m)
[xbar, std, sspz, rz, ifail] = nag_correg_coeffs_zero(x, 'n', n, 'm', m)
Note: the interface to this routine has changed since earlier releases of the toolbox:
At Mark 22: n was made optional

Description

The input data consists of n observations for each of m variables, given as an array
xij,  i=1,2,,nn2 ,  j=1,2,,mm2,  
where xij is the ith observation on the jth variable.
The quantities calculated are:
(a) Means:
x-j=1ni=1nxij,  j=1,2,,m.  
(b) Standard deviations:
sj=1n- 1 i= 1n xij-x-j 2,   j= 1,2,,m.  
(c) Sums of squares and cross-products about zero:
S~jk=i=1nxijxik,  j,k=1,2,,m.  
(d) Correlation-like coefficients:
R~jk=S~jkS~jjS~kk ,   j,k= 1,2,,m.  
If S~jj or S~kk is zero, R~jk is set to zero.

References

None.

Parameters

Compulsory Input Parameters

1:     xldxm – double array
ldx, the first dimension of the array, must satisfy the constraint ldxn.
xij must be set to the value of xij, the ith observation on the jth variable, for i=1,2,,n and j=1,2,,m.

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the first dimension of the array x.
n, the number of observations or cases.
Constraint: n2.
2:     m int64int32nag_int scalar
Default: the second dimension of the array x.
m, the number of variables.
Constraint: m2.

Output Parameters

1:     xbarm – double array
xbarj contains the mean value, x-j, of the jth variable, for j=1,2,,m.
2:     stdm – double array
The standard deviation, sj, of the jth variable, for j=1,2,,m.
3:     sspzldsspzm – double array
sspzjk is the cross-product about zero, S~jk, for j=1,2,,m and k=1,2,,m.
4:     rzldrzm – double array
rzjk is the correlation-like coefficient, R~jk, between the jth and kth variables, for j=1,2,,m and k=1,2,,m.
5:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:
   ifail=1
On entry,n<2.
   ifail=2
On entry,m<2.
   ifail=3
On entry,ldx<n,
orldsspz<m,
orldrz<m.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

nag_correg_coeffs_zero (g02bd) does not use additional precision arithmetic for the accumulation of scalar products, so there may be a loss of significant figures for large n.

Further Comments

The time taken by nag_correg_coeffs_zero (g02bd) depends on n and m.
The function uses a two-pass algorithm.

Example

This example reads in a set of data consisting of five observations on each of three variables. The means, standard deviations, sums of squares and cross-products about zero, and correlation-like coefficients for all three variables are then calculated and printed.
function g02bd_example


fprintf('g02bd example results\n\n');

x = [ 2,  3, 3;
      4,  6, 4;
      9,  9, 0;
      0, 12, 2;
     12, -1, 5];
[n,m] = size(x);
fprintf('Number of variables (columns) = %d\n', m);
fprintf('Number of cases     (rows)    = %d\n\n', n);
disp('Data matrix is:-');
disp(x);

[xbar, std, sspz, rz, ifail] = ...
  g02bd(x);

fprintf('Variable   Mean     St. dev.\n');
fprintf('%5d%11.4f%11.4f\n',[[1:m]' xbar std]');
fprintf('\nSums of squares and cross-products about zero\n');
disp(sspz)
fprintf('Correlation-like coefficients\n');
disp(rz);


g02bd example results

Number of variables (columns) = 3
Number of cases     (rows)    = 5

Data matrix is:-
     2     3     3
     4     6     4
     9     9     0
     0    12     2
    12    -1     5

Variable   Mean     St. dev.
    1     5.4000     4.9800
    2     5.8000     5.0695
    3     2.8000     1.9235

Sums of squares and cross-products about zero
   245    99    82
    99   271    52
    82    52    54

Correlation-like coefficients
    1.0000    0.3842    0.7129
    0.3842    1.0000    0.4299
    0.7129    0.4299    1.0000


PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015