hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_stat_prob_f_vector (g01sd)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_stat_prob_f_vector (g01sd) returns a number of lower or upper tail probabilities for the F or variance-ratio distribution with real degrees of freedom.

Syntax

[p, ivalid, ifail] = g01sd(tail, f, df1, df2, 'ltail', ltail, 'lf', lf, 'ldf1', ldf1, 'ldf2', ldf2)
[p, ivalid, ifail] = nag_stat_prob_f_vector(tail, f, df1, df2, 'ltail', ltail, 'lf', lf, 'ldf1', ldf1, 'ldf2', ldf2)

Description

The lower tail probability for the F, or variance-ratio, distribution with ui and vi degrees of freedom, P Fi fi :ui,vi , is defined by:
P Fi fi :ui,vi = ui ui/2 vi vi/2 Γ ui + vi / 2 Γ ui/2 Γ vi/2 0 fi Fi ui-2 / 2 ui Fi + vi - ui + vi / 2 d Fi ,  
for ui, vi>0, fi0.
The probability is computed by means of a transformation to a beta distribution, Pβi Bi βi :ai,bi :
P Fi fi :ui,vi = Pβi Bi ui fi ui fi + vi : ui / 2 , vi / 2  
and using a call to nag_stat_prob_beta (g01ee).
For very large values of both ui and vi, greater than 105, a normal approximation is used. If only one of ui or vi is greater than 105 then a χ2 approximation is used, see Abramowitz and Stegun (1972).
The input arrays to this function are designed to allow maximum flexibility in the supply of vector arguments by re-using elements of any arrays that are shorter than the total number of evaluations required. See Vectorized Routines in the G01 Chapter Introduction for further information.

References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover Publications
Hastings N A J and Peacock J B (1975) Statistical Distributions Butterworth

Parameters

Compulsory Input Parameters

1:     tailltail – cell array of strings
Indicates whether the lower or upper tail probabilities are required. For j= i-1 mod ltail +1 , for i=1,2,,maxltail,lf,ldf1,ldf2:
tailj='L'
The lower tail probability is returned, i.e., pi = P Fi fi :ui,vi .
tailj='U'
The upper tail probability is returned, i.e., pi = P Fi fi :ui,vi .
Constraint: tailj='L' or 'U', for j=1,2,,ltail.
2:     flf – double array
fi, the value of the F variate with fi=fj, j=i-1 mod lf+1.
Constraint: fj0.0, for j=1,2,,lf.
3:     df1ldf1 – double array
ui, the degrees of freedom of the numerator variance with ui=df1j, j=i-1 mod ldf1+1.
Constraint: df1j>0.0, for j=1,2,,ldf1.
4:     df2ldf2 – double array
vi, the degrees of freedom of the denominator variance with vi=df2j, j=i-1 mod ldf2+1.
Constraint: df2j>0.0, for j=1,2,,ldf2.

Optional Input Parameters

1:     ltail int64int32nag_int scalar
Default: the dimension of the array tail.
The length of the array tail.
Constraint: ltail>0.
2:     lf int64int32nag_int scalar
Default: the dimension of the array f.
The length of the array f.
Constraint: lf>0.
3:     ldf1 int64int32nag_int scalar
Default: the dimension of the array df1.
The length of the array df1.
Constraint: ldf1>0.
4:     ldf2 int64int32nag_int scalar
Default: the dimension of the array df2.
The length of the array df2.
Constraint: ldf2>0.

Output Parameters

1:     p: – double array
The dimension of the array p will be maxltail,lf,ldf1,ldf2
pi, the probabilities for the F-distribution.
2:     ivalid: int64int32nag_int array
The dimension of the array ivalid will be maxltail,lf,ldf1,ldf2
ivalidi indicates any errors with the input arguments, with
ivalidi=0
No error.
ivalidi=1
On entry,invalid value supplied in tail when calculating pi.
ivalidi=2
On entry,fi<0.0.
ivalidi=3
On entry,ui0.0,
orvi0.0.
ivalidi=4
The solution has failed to converge. The result returned should represent an approximation to the solution.
3:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Note: nag_stat_prob_f_vector (g01sd) may return useful information for one or more of the following detected errors or warnings.
Errors or warnings detected by the function:

Cases prefixed with W are classified as warnings and do not generate an error of type NAG:error_n. See nag_issue_warnings.

W  ifail=1
On entry, at least one value of f, df1, df2 or tail was invalid, or the solution failed to converge.
Check ivalid for more information.
   ifail=2
Constraint: ltail>0.
   ifail=3
Constraint: lf>0.
   ifail=4
Constraint: ldf1>0.
   ifail=5
Constraint: ldf2>0.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

The result should be accurate to five significant digits.

Further Comments

For higher accuracy nag_stat_prob_beta_vector (g01se) can be used along with the transformations given in Description.

Example

This example reads values from, and degrees of freedom for, a number of F-distributions and computes the associated lower tail probabilities.
function g01sd_example


fprintf('g01sd example results\n\n');

f = [5.5; 39.9; 2.5];
df1 = [1.5; 1; 20.25];
df2 = [25.5; 1; 1];
tail = {'L'};
% calculate probability
[prob, ivalid, ifail] = g01sd( ...
                               tail, f, df1, df2);

fprintf('    F       df1    df2     prob\n');
lf    = numel(f);
ldf1  = numel(df1);
ldf2  = numel(df2);
ltail = numel(tail);
len   = max ([lf, ldf1, ldf2, ltail]);
for i=0:len-1
  fprintf('%7.3f%8.3f%8.3f%8.3f\n', f(mod(i,lf)+1), df1(mod(i,ldf1)+1), ...
          df2(mod(i,ldf2)+1), prob(i+1));
end


g01sd example results

    F       df1    df2     prob
  5.500   1.500  25.500   0.984
 39.900   1.000   1.000   0.900
  2.500  20.250   1.000   0.534

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015