hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_stat_inv_cdf_chisq (g01fc)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_stat_inv_cdf_chisq (g01fc) returns the deviate associated with the given lower tail probability of the χ2-distribution with real degrees of freedom.

Syntax

[result, ifail] = g01fc(p, df)
[result, ifail] = nag_stat_inv_cdf_chisq(p, df)

Description

The deviate, xp, associated with the lower tail probability p of the χ2-distribution with ν degrees of freedom is defined as the solution to
PXxp:ν=p=12ν/2Γν/2 0xpe-X/2Xv/2-1dX,  0xp<;ν>0.  
The required xp is found by using the relationship between a χ2-distribution and a gamma distribution, i.e., a χ2-distribution with ν degrees of freedom is equal to a gamma distribution with scale parameter 2 and shape parameter ν/2.
For very large values of ν, greater than 105, Wilson and Hilferty's normal approximation to the χ2 is used; see Kendall and Stuart (1969).

References

Best D J and Roberts D E (1975) Algorithm AS 91. The percentage points of the χ2 distribution Appl. Statist. 24 385–388
Hastings N A J and Peacock J B (1975) Statistical Distributions Butterworth
Kendall M G and Stuart A (1969) The Advanced Theory of Statistics (Volume 1) (3rd Edition) Griffin

Parameters

Compulsory Input Parameters

1:     p – double scalar
p, the lower tail probability from the required χ2-distribution.
Constraint: 0.0p<1.0.
2:     df – double scalar
ν, the degrees of freedom of the χ2-distribution.
Constraint: df>0.0.

Optional Input Parameters

None.

Output Parameters

1:     result – double scalar
The result of the function.
2:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Note: nag_stat_inv_cdf_chisq (g01fc) may return useful information for one or more of the following detected errors or warnings.
Errors or warnings detected by the function:
If ifail=1, 2, 3 or 5 on exit, then nag_stat_inv_cdf_chisq (g01fc) returns 0.0.

Cases prefixed with W are classified as warnings and do not generate an error of type NAG:error_n. See nag_issue_warnings.

   ifail=1
On entry,p<0.0,
orp1.0.
   ifail=2
On entry,df0.0.
   ifail=3
p is too close to 0 or 1 for the result to be calculated.
W  ifail=4
The solution has failed to converge. The result should be a reasonable approximation.
   ifail=5
The series used to calculate the gamma function has failed to converge. This is an unlikely error exit.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

The results should be accurate to five significant digits for most argument values. Some accuracy is lost for p close to 0.0.

Further Comments

For higher accuracy the relationship described in Description may be used and a direct call to nag_stat_inv_cdf_gamma (g01ff) made.

Example

This example reads lower tail probabilities for several χ2-distributions, and calculates and prints the corresponding deviates until the end of data is reached.
function g01fc_example


fprintf('g01fc example results\n\n');

p    = [ 0.01;   0.428;   0.869];
df   = [20.00;   7.500;  45.000];

fprintf('      p      df       x\n');
for j = 1:numel(p);

  [x, ifail] = g01fc( ...
                      p(j) , df(j));

  fprintf('%9.3f%8.3f%8.3f\n', p(j), df(j), x);
end


g01fc example results

      p      df       x
    0.010  20.000   8.260
    0.428   7.500   6.201
    0.869  45.000  55.738

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015