hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_stat_prob_f (g01ed)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_stat_prob_f (g01ed) returns the probability for the lower or upper tail of the F or variance-ratio distribution with real degrees of freedom.

Syntax

[result, ifail] = g01ed(f, df1, df2, 'tail', tail)
[result, ifail] = nag_stat_prob_f(f, df1, df2, 'tail', tail)
Note: the interface to this routine has changed since earlier releases of the toolbox:
At Mark 23: tail was made optional (default 'L')

Description

The lower tail probability for the F, or variance-ratio distribution, with ν1 and ν2 degrees of freedom, PFf:ν1,ν2, is defined by:
PFf:ν1,ν2=ν1ν1/2ν2ν2/2 Γ ν1+ν2/2 Γν1/2 Γν2/2 0fFν1-2/2ν1F+ν2- ν1+ν2/2dF,  
for ν1, ν2>0, f0.
The probability is computed by means of a transformation to a beta distribution, PβBβ:a,b:
PFf:ν1,ν2=Pβ Bν1f ν1f+ν2 :ν1/2,ν2/2  
and using a call to nag_stat_prob_beta (g01ee).
For very large values of both ν1 and ν2, greater than 105, a normal approximation is used. If only one of ν1 or ν2 is greater than 105 then a χ2 approximation is used, see Abramowitz and Stegun (1972).

References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover Publications
Hastings N A J and Peacock J B (1975) Statistical Distributions Butterworth

Parameters

Compulsory Input Parameters

1:     f – double scalar
f, the value of the F variate.
Constraint: f0.0.
2:     df1 – double scalar
The degrees of freedom of the numerator variance, ν1.
Constraint: df1>0.0.
3:     df2 – double scalar
The degrees of freedom of the denominator variance, ν2.
Constraint: df2>0.0.

Optional Input Parameters

1:     tail – string (length ≥ 1)
Default: 'L'
Indicates whether an upper or lower tail probability is required.
tail='L'
The lower tail probability is returned, i.e., PFf:ν1,ν2.
tail='U'
The upper tail probability is returned, i.e., PFf:ν1,ν2.
Constraint: tail='L' or 'U'.

Output Parameters

1:     result – double scalar
The result of the function.
2:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Note: nag_stat_prob_f (g01ed) may return useful information for one or more of the following detected errors or warnings.
Errors or warnings detected by the function:
If ifail=1, 2 or 3 on exit, then nag_stat_prob_f (g01ed) returns 0.0.
   ifail=1
On entry,tail'L' or 'U'.
   ifail=2
On entry,f<0.0.
   ifail=3
On entry,df10.0,
ordf20.0.
   ifail=4
f is too far out into the tails for the probability to be evaluated exactly. The result tends to approach 1.0 if f is large, or 0.0 if f is small. The result returned is a good approximation to the required solution.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

The result should be accurate to five significant digits.

Further Comments

For higher accuracy nag_stat_prob_beta (g01ee) can be used along with the transformations given in Description.

Example

This example reads values from, and degrees of freedom for, a number of F-distributions and computes the associated lower tail probabilities.
function g01ed_example


fprintf('g01ed example results\n\n');

% Lower tail probabilities for F distribution
f   = [ 5.5; 39.9;  2.50];
df1 = [ 1.5;  1.0; 20.25]; 
df2 = [25.5;  1.0;  1.00];
tail = {'Lower'; 'Lower'; 'Lower';};

fprintf('  Tail    F      df1     df2    probability\n');
for j = 1:numel(f);

  [p, ifail] = g01ed( ...
                      f(j), df1(j), df2(j), 'tail', tail{j});

  fprintf('%4s%8.3f%8.1f%8.1f%12.4f\n',tail{j}(1), f(j), df1(j), df2(j), p);
end


g01ed example results

  Tail    F      df1     df2    probability
   L   5.500     1.5    25.5      0.9837
   L  39.900     1.0     1.0      0.9000
   L   2.500    20.2     1.0      0.5342

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015