hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_sparse_real_symm_matvec (f11xe)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_sparse_real_symm_matvec (f11xe) computes a matrix-vector product involving a real sparse symmetric matrix stored in symmetric coordinate storage format.

Syntax

[y, ifail] = f11xe(a, irow, icol, check, x, 'n', n, 'nz', nz)
[y, ifail] = nag_sparse_real_symm_matvec(a, irow, icol, check, x, 'n', n, 'nz', nz)

Description

nag_sparse_real_symm_matvec (f11xe) computes the matrix-vector product
y=Ax  
where A is an n by n symmetric sparse matrix, of arbitrary sparsity pattern, stored in symmetric coordinate storage (SCS) format (see Symmetric coordinate storage (SCS) format in the F11 Chapter Introduction). The array a stores all nonzero elements in the lower triangular part of A, while arrays irow and icol store the corresponding row and column indices respectively.
It is envisaged that a common use of nag_sparse_real_symm_matvec (f11xe) will be to compute the matrix-vector product required in the application of nag_sparse_real_symm_basic_solver (f11ge) to sparse symmetric linear systems. An illustration of this usage appears in nag_sparse_real_symm_precon_ssor_solve (f11jd).

References

None.

Parameters

Compulsory Input Parameters

1:     anz – double array
The nonzero elements in the lower triangular part of the matrix A, ordered by increasing row index, and by increasing column index within each row. Multiple entries for the same row and column indices are not permitted. The function nag_sparse_real_symm_sort (f11zb) may be used to order the elements in this way.
2:     irownz int64int32nag_int array
3:     icolnz int64int32nag_int array
The row and column indices of the nonzero elements supplied in array a.
Constraints:
irow and icol must satisfy these constraints (which may be imposed by a call to nag_sparse_real_symm_sort (f11zb)):
  • 1irowin and 1icoliirowi, for i=1,2,,nz;
  • irowi-1<irowi or irowi-1=irowi and icoli-1<icoli, for i=2,3,,nz.
4:     check – string (length ≥ 1)
Specifies whether or not the SCS representation of the matrix A, values of n, nz, irow and icol should be checked.
check='C'
Checks are carried out on the values of n, nz, irow and icol.
check='N'
None of these checks are carried out.
See also Use of check.
Constraint: check='C' or 'N'.
5:     xn – double array
The vector x.

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the dimension of the array x.
n, the order of the matrix A.
Constraint: n1.
2:     nz int64int32nag_int scalar
Default: the dimension of the arrays a, irow, icol. (An error is raised if these dimensions are not equal.)
The number of nonzero elements in the lower triangular part of A.
Constraint: 1nzn×n+1/2.

Output Parameters

1:     yn – double array
The vector y.
2:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:
   ifail=1
On entry,check'C' or 'N'.
   ifail=2
On entry,n<1,
ornz<1,
ornz>n×n+1/2.
   ifail=3
On entry, the arrays irow and icol fail to satisfy the following constraints:
  • 1irowin and 1icoliirowi, for i=1,2,,nz;
  • irowi-1<irowi or irowi-1=irowi and icoli-1<icoli, for i=2,3,,nz.
Therefore a nonzero element has been supplied which does not lie in the lower triangular part of A, is out of order, or has duplicate row and column indices. Call nag_sparse_real_symm_sort (f11zb) to reorder and sum or remove duplicates.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

The computed vector y satisfies the error bound
y-AxcnεAx,  
where cn is a modest linear function of n, and ε is the machine precision.

Further Comments

Timing

The time taken for a call to nag_sparse_real_symm_matvec (f11xe) is proportional to nz.

Use of check

It is expected that a common use of nag_sparse_real_symm_matvec (f11xe) will be to compute the matrix-vector product required in the application of nag_sparse_real_symm_basic_solver (f11ge) to sparse symmetric linear systems. In this situation nag_sparse_real_symm_matvec (f11xe) is likely to be called many times with the same matrix A. In the interests of both reliability and efficiency you are recommended to set check='C' for the first of such calls, and to set check='N' for all subsequent calls.

Example

This example reads in a symmetric positive definite sparse matrix A and a vector x. It then calls nag_sparse_real_symm_matvec (f11xe) to compute the matrix-vector product y=Ax.
function f11xe_example


fprintf('f11xe example results\n\n');

% Sparse Matrix vector Product y=Ax, A is 9x9 symmetric. 

a     = [        4 -1 6 1 2 3 2 4 1 2 6 -4 1 -1 6 -1 -1 3 1 1 -1 1 4];
irow  = [int64(1) 2 2 3 3 4 5 5 6 6 6  7 7  7 7  8  8 8 9 9  9 9 9];
icol  = [int64(1) 1 2 2 3 4 1 5 3 4 6  2 5  6 7  4  6 8 1 5  6 8 9];

x     = [0.70  0.16  0.52  0.77  0.28  0.21  0.93  0.20  0.90];

check = 'C';
[y, ifail] = f11xe( ...
                    a, irow, icol, check, x);

disp('Matrix-vector product');
disp(y);


f11xe example results

Matrix-vector product
    4.1000
   -2.9400
    1.4100
    2.5300
    4.3500
    1.2900
    5.0100
    0.5200
    4.5700


PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015