PDF version (NAG web site
, 64-bit version, 64-bit version)
NAG Toolbox: nag_lapack_dgeev (f08na)
Purpose
nag_lapack_dgeev (f08na) computes the eigenvalues and, optionally, the left and/or right eigenvectors for an by real nonsymmetric matrix .
Syntax
Description
The right eigenvector
of
satisfies
where
is the
th eigenvalue of
. The left eigenvector
of
satisfies
where
denotes the conjugate transpose of
.
The matrix is first reduced to upper Hessenberg form by means of orthogonal similarity transformations, and the algorithm is then used to further reduce the matrix to upper quasi-triangular Schur form, , with by and by blocks on the main diagonal. The eigenvalues are computed from , the by blocks corresponding to complex conjugate pairs and, optionally, the eigenvectors of are computed and backtransformed to the eigenvectors of .
References
Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999)
LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia
http://www.netlib.org/lapack/lug
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore
Parameters
Compulsory Input Parameters
- 1:
– string (length ≥ 1)
-
If
, the left eigenvectors of
are not computed.
If , the left eigenvectors of are computed.
Constraint:
or .
- 2:
– string (length ≥ 1)
-
If
, the right eigenvectors of
are not computed.
If , the right eigenvectors of are computed.
Constraint:
or .
- 3:
– double array
-
The first dimension of the array
a must be at least
.
The second dimension of the array
a must be at least
.
The by matrix .
Optional Input Parameters
- 1:
– int64int32nag_int scalar
-
Default:
the first dimension of the array
a and the second dimension of the array
a. (An error is raised if these dimensions are not equal.)
, the order of the matrix .
Constraint:
.
Output Parameters
- 1:
– double array
-
The first dimension of the array
a will be
.
The second dimension of the array
a will be
.
- 2:
– double array
- 3:
– double array
-
The dimension of the arrays
wr and
wi will be
wr and
wi contain the real and imaginary parts, respectively, of the computed eigenvalues. Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having the positive imaginary part first.
- 4:
– double array
-
The first dimension,
, of the array
vl will be
- if , ;
- otherwise .
The second dimension of the array
vl will be
if
and
otherwise.
If
, the left eigenvectors
are stored one after another in the columns of
vl, in the same order as their corresponding eigenvalues. If the
th eigenvalue is real, then
, the
th column of
vl. If the
th and
st eigenvalues form a complex conjugate pair, then
and
.
If
,
vl is not referenced.
- 5:
– double array
-
The first dimension,
, of the array
vr will be
- if , ;
- otherwise .
The second dimension of the array
vr will be
if
and
otherwise.
If
, the right eigenvectors
are stored one after another in the columns of
vr, in the same order as their corresponding eigenvalues. If the
th eigenvalue is real, then
, the
th column of
vr. If the
th and
st eigenvalues form a complex conjugate pair, then
and
.
If
,
vr is not referenced.
- 6:
– int64int32nag_int scalar
unless the function detects an error (see
Error Indicators and Warnings).
Error Indicators and Warnings
Cases prefixed with W are classified as warnings and
do not generate an error of type NAG:error_n. See nag_issue_warnings.
-
If , argument had an illegal value. An explanatory message is output, and execution of the program is terminated.
- W
-
The
algorithm failed to compute all the eigenvalues, and no eigenvectors have been computed; elements
to
n of
wr and
wi contain eigenvalues which have converged.
Accuracy
The computed eigenvalues and eigenvectors are exact for a nearby matrix
, where
and
is the
machine precision. See Section 4.8 of
Anderson et al. (1999) for further details.
Further Comments
Each eigenvector is normalized to have Euclidean norm equal to unity and the element of largest absolute value real.
The total number of floating-point operations is proportional to .
The complex analogue of this function is
nag_lapack_zgeev (f08nn).
Example
This example finds all the eigenvalues and right eigenvectors of the matrix
Note that the block size (NB) of assumed in this example is not realistic for such a small problem, but should be suitable for large problems.
Open in the MATLAB editor:
f08na_example
function f08na_example
fprintf('f08na example results\n\n');
n = 4;
a = [0.35, 0.45, -0.14, -0.17;
0.09, 0.07, -0.54, 0.35;
-0.44, -0.33, -0.03, 0.17;
0.25, -0.32, -0.13, 0.11];
jobvl = 'No left vectors';
jobvr = 'Vectors (right)';
[~, wr, wi, ~, vr, info] = f08na( ...
jobvl, jobvr, a);
fprintf('Index Eigenvalue Eigenvector\n');
k = 1;
conjugating = false;
for j = 1:n
fprintf('%3d', j);
if wi(j)==0 & ~conjugating
fprintf(' %12.4e%15s',wr(j),' ');
for l = 1:n
if (l>1)
fprintf('%32s', ' ');
end
fprintf('%12.4e\n',vr(l,k));
end
k = k + 1;
else
if conjugating
pl = '-';
mi = '+';
else
pl = '+';
mi = '-';
end
fprintf(' %12.4e %s %10.4ei ', wr(j), pl, abs(wi(j)));
for l = 1:n
if (l>1)
fprintf('%32s', ' ');
end
if vr(l,k+1)>0
fprintf('%12.4e %s %10.4ei\n', vr(l,k), pl, vr(l,k+1));
else
fprintf('%12.4e %s %10.4ei\n', vr(l,k), mi, abs(vr(l,k+1)));
end
end
if conjugating
k = k + 2;
end
conjugating = ~conjugating;
end
fprintf('\n');
end
f08na example results
Index Eigenvalue Eigenvector
1 7.9948e-01 -6.5509e-01
-5.2363e-01
5.3622e-01
-9.5607e-02
2 -9.9412e-02 + 4.0079e-01i -1.9330e-01 + 2.5463e-01i
2.5186e-01 - 5.2240e-01i
9.7182e-02 - 3.0838e-01i
6.7595e-01 - 0.0000e+00i
3 -9.9412e-02 - 4.0079e-01i -1.9330e-01 - 2.5463e-01i
2.5186e-01 + 5.2240e-01i
9.7182e-02 + 3.0838e-01i
6.7595e-01 + 0.0000e+00i
4 -1.0066e-01 1.2533e-01
3.3202e-01
5.9384e-01
7.2209e-01
PDF version (NAG web site
, 64-bit version, 64-bit version)
© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015