hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_lapack_zhbevd (f08hq)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_lapack_zhbevd (f08hq) computes all the eigenvalues and, optionally, all the eigenvectors of a complex Hermitian band matrix. If the eigenvectors are requested, then it uses a divide-and-conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal–Walker–Kahan variant of the QL or QR algorithm.

Syntax

[ab, w, z, info] = f08hq(job, uplo, kd, ab, 'n', n)
[ab, w, z, info] = nag_lapack_zhbevd(job, uplo, kd, ab, 'n', n)

Description

nag_lapack_zhbevd (f08hq) computes all the eigenvalues and, optionally, all the eigenvectors of a complex Hermitian band matrix A. In other words, it can compute the spectral factorization of A as
A=ZΛZH,  
where Λ is a real diagonal matrix whose diagonal elements are the eigenvalues λi, and Z is the (complex) unitary matrix whose columns are the eigenvectors zi. Thus
Azi=λizi,  i=1,2,,n.  

References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

Parameters

Compulsory Input Parameters

1:     job – string (length ≥ 1)
Indicates whether eigenvectors are computed.
job='N'
Only eigenvalues are computed.
job='V'
Eigenvalues and eigenvectors are computed.
Constraint: job='N' or 'V'.
2:     uplo – string (length ≥ 1)
Indicates whether the upper or lower triangular part of A is stored.
uplo='U'
The upper triangular part of A is stored.
uplo='L'
The lower triangular part of A is stored.
Constraint: uplo='U' or 'L'.
3:     kd int64int32nag_int scalar
If uplo='U', the number of superdiagonals, kd, of the matrix A.
If uplo='L', the number of subdiagonals, kd, of the matrix A.
Constraint: kd0.
4:     abldab: – complex array
The first dimension of the array ab must be at least kd+1.
The second dimension of the array ab must be at least max1,n.
The upper or lower triangle of the n by n Hermitian band matrix A.
The matrix is stored in rows 1 to kd+1, more precisely,
  • if uplo='U', the elements of the upper triangle of A within the band must be stored with element Aij in abkd+1+i-jj​ for ​max1,j-kdij;
  • if uplo='L', the elements of the lower triangle of A within the band must be stored with element Aij in ab1+i-jj​ for ​jiminn,j+kd.

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the first dimension of the array ab and the second dimension of the array ab. (An error is raised if these dimensions are not equal.)
n, the order of the matrix A.
Constraint: n0.

Output Parameters

1:     abldab: – complex array
The first dimension of the array ab will be kd+1.
The second dimension of the array ab will be max1,n.
ab stores values generated during the reduction to tridiagonal form.
The first superdiagonal or subdiagonal and the diagonal of the tridiagonal matrix T are returned in ab using the same storage format as described above.
2:     w: – double array
The dimension of the array w will be max1,n
The eigenvalues of the matrix A in ascending order.
3:     zldz: – complex array
The first dimension, ldz, of the array z will be
  • if job='V', ldz= max1,n ;
  • if job='N', ldz=1.
The second dimension of the array z will be max1,n if job='V' and at least 1 if job='N'.
If job='V', z stores the unitary matrix Z which contains the eigenvectors of A. The ith column of Z contains the eigenvector which corresponds to the eigenvalue wi.
If job='N', z is not referenced.
4:     info int64int32nag_int scalar
info=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

   info=-i
If info=-i, parameter i had an illegal value on entry. The parameters are numbered as follows:
1: job, 2: uplo, 3: n, 4: kd, 5: ab, 6: ldab, 7: w, 8: z, 9: ldz, 10: work, 11: lwork, 12: rwork, 13: lrwork, 14: iwork, 15: liwork, 16: info.
It is possible that info refers to a parameter that is omitted from the MATLAB interface. This usually indicates that an error in one of the other input parameters has caused an incorrect value to be inferred.
   info>0
if info=i and job='N', the algorithm failed to converge; i elements of an intermediate tridiagonal form did not converge to zero; if info=i and job='V', then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and column i/n+1 through i mod n+1.

Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix A+E, where
E2 = Oε A2 ,  
and ε is the machine precision. See Section 4.7 of Anderson et al. (1999) for further details.

Further Comments

The real analogue of this function is nag_lapack_dsbevd (f08hc).

Example

This example computes all the eigenvalues and eigenvectors of the Hermitian band matrix A, where
A = 1+0i 2-1i 3-1i 0+0i 0+0i 2+1i 2+0i 3-2i 4-2i 0+0i 3+1i 3+2i 3+0i 4-3i 5-3i 0+0i 4+2i 4+3i 4+0i 5-4i 0+0i 0+0i 5+3i 5+4i 5+0i .  
function f08hq_example


fprintf('f08hq example results\n\n');

% Hermitian band matrix A, stored on symmetric banded format
uplo = 'L';
kd = int64(2);
ab = [1 + 0i,  2 + 0i,  3 + 0i,  4 + 0i,  5 + 0i;
      2 + 1i,  3 + 2i,  4 + 3i,  5 + 4i,  0 + 0i;
      3 + 1i,  4 + 2i,  5 + 3i,  0 + 0i,  0 + 0i];

% All eigenvalues and eigenvectors of A
job = 'V';
[abf, w, z, info] = f08hq( ...
                           job, uplo, kd, ab);

% Normalize: largest elements are real
for i = 1:5
  [~,k] = max(abs(real(z(:,i)))+abs(imag(z(:,i))));
  z(:,i) = z(:,i)*conj(z(k,i))/abs(z(k,i));
end

disp('Eigenvalues');
disp(w');
[ifail] = x04da( ...
                 'General', ' ', z, 'Eigenvectors');


f08hq example results

Eigenvalues
   -6.4185   -1.4094    1.4421    4.4856   16.9002

 Eigenvectors
          1       2       3       4       5
 1  -0.2534 -0.4188 -0.2560  0.4767  0.1051
    -0.0538  0.4797  0.3721 -0.2748 -0.0983

 2  -0.0662 -0.0122  0.5344  0.5524  0.2516
     0.4301 -0.3529  0.0000  0.0000 -0.1789

 3   0.5274  0.4621 -0.4245  0.2076  0.4994
     0.0000  0.0000  0.0915 -0.0660 -0.1513

 4   0.1061 -0.1642  0.4964 -0.1379  0.5611
    -0.4981  0.3146 -0.1546  0.1026  0.0000

 5  -0.4519 -0.0360 -0.1979 -0.2651  0.4837
     0.0424 -0.3593 -0.1114 -0.4948  0.2509

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015