Open in the MATLAB editor: f08cu_example
function f08cu_example fprintf('f08cu example results\n\n'); m = 6; n = 4; a = [ 0.96 - 0.81i, -0.03 + 0.96i, -0.91 + 2.06i, -0.05 + 0.41i; -0.98 + 1.98i, -1.20 + 0.19i, -0.66 + 0.42i, -0.81 + 0.56i; 0.62 - 0.46i, 1.01 + 0.02i, 0.63 - 0.17i, -1.11 + 0.60i; -0.37 + 0.38i, 0.19 - 0.54i, -0.98 - 0.36i, 0.22 - 0.20i; 0.83 + 0.51i, 0.20 + 0.01i, -0.17 - 0.46i, 1.47 + 1.59i; 1.08 - 0.28i, 0.20 - 0.12i, -0.07 + 1.23i, 0.26 + 0.26i]; b = [-2.09 + 1.93i, 3.26 - 2.70i; 3.34 - 3.53i, -6.22 + 1.16i; -4.94 - 2.04i, 7.94 - 3.13i; 0.17 + 4.23i, 1.04 - 4.26i; -5.19 + 3.63i, -2.31 - 2.12i; 0.98 + 2.53i, -1.39 - 4.05i]; % Compute the QL factorization of A [ql, tau, info] = f08cs(a); % LX = Q^H B = C; compute C = (Q^H)*B [c, info] = f08cu( ... 'Left', 'ConjTrans', ql, tau, b); % Least-squares solution X = L^-1 C (lower n part) il = m-n+1; [x, info] = f07ts( ... 'Lower', 'Notrans','Non-Unit', ql(il:m,:), c(il:m,:)); % Print least-squares solutions ncols = int64(80); indent = int64(0); [ifail] = x04db( ... 'General', ' ', x, 'Bracketed', 'F7.4', ... 'Least-squares solution(s)', 'Integer', 'Integer', ... ncols, indent); % Compute estimates of the square roots of the residual sums of squares. rnorm = zeros(2,1); for j=1:2 rnorm(j) = norm(c(1:m-n,j)); end fprintf('\nSquare root(s) of the residual sum(s) of squares\n'); fprintf('\t%11.2e %11.2e\n', rnorm(1), rnorm(2));
f08cu example results Least-squares solution(s) 1 2 1 (-0.5044,-1.2179) ( 0.7629, 1.4529) 2 (-2.4281, 2.8574) ( 5.1570,-3.6089) 3 ( 1.4872,-2.1955) (-2.6518, 2.1203) 4 ( 0.4537, 2.6904) (-2.7606, 0.3318) Square root(s) of the residual sum(s) of squares 6.88e-02 1.87e-01