hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_lapack_zgemqrt (f08aq)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_lapack_zgemqrt (f08aq) multiplies an arbitrary complex matrix C by the complex unitary matrix Q from a QR factorization computed by nag_lapack_zgeqrt (f08ap).

Syntax

[c, info] = f08aq(side, trans, v, t, c, 'm', m, 'n', n, 'k', k, 'nb', nb)
[c, info] = nag_lapack_zgemqrt(side, trans, v, t, c, 'm', m, 'n', n, 'k', k, 'nb', nb)

Description

nag_lapack_zgemqrt (f08aq) is intended to be used after a call to nag_lapack_zgeqrt (f08ap), which performs a QR factorization of a complex matrix A. The unitary matrix Q is represented as a product of elementary reflectors.
This function may be used to form one of the matrix products
QC , QHC , CQ ​ or ​ CQH ,  
overwriting the result on C (which may be any complex rectangular matrix).
A common application of this function is in solving linear least squares problems, as described in the F08 Chapter Introduction and illustrated in Example in nag_lapack_zgeqrt (f08ap).

References

Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University Press, Baltimore

Parameters

Compulsory Input Parameters

1:     side – string (length ≥ 1)
Indicates how Q or QH is to be applied to C.
side='L'
Q or QH is applied to C from the left.
side='R'
Q or QH is applied to C from the right.
Constraint: side='L' or 'R'.
2:     trans – string (length ≥ 1)
Indicates whether Q or QH is to be applied to C.
trans='N'
Q is applied to C.
trans='C'
QH is applied to C.
Constraint: trans='N' or 'C'.
3:     vldv: – complex array
The first dimension, ldv, of the array v must satisfy
  • if side='L', ldv max1,m ;
  • if side='R', ldv max1,n .
The second dimension of the array v must be at least max1,k.
Details of the vectors which define the elementary reflectors, as returned by nag_lapack_zgeqrt (f08ap) in the first k columns of its array argument a.
4:     tldt: – complex array
The first dimension of the array t must be at least nb.
The second dimension of the array t must be at least max1,k.
Further details of the unitary matrix Q as returned by nag_lapack_zgeqrt (f08ap). The number of blocks is b=knb, where k=minm,n and each block is of order nb except for the last block, which is of order k-b-1×nb. For the b blocks the upper triangular block reflector factors T1,T2,,Tb are stored in the nb by n matrix T as T=T1|T2||Tb.
5:     cldc: – complex array
The first dimension of the array c must be at least max1,m.
The second dimension of the array c must be at least max1,n.
The m by n matrix C.

Optional Input Parameters

1:     m int64int32nag_int scalar
Default: the first dimension of the array c.
m, the number of rows of the matrix C.
Constraint: m0.
2:     n int64int32nag_int scalar
Default: the second dimension of the array c.
n, the number of columns of the matrix C.
Constraint: n0.
3:     k int64int32nag_int scalar
Default: the second dimension of the arrays v, t.
k, the number of elementary reflectors whose product defines the matrix Q. Usually k=minmA,nA where mA, nA are the dimensions of the matrix A supplied in a previous call to nag_lapack_zgeqrt (f08ap).
Constraints:
  • if side='L', m k 0 ;
  • if side='R', n k 0 .
4:     nb int64int32nag_int scalar
Default: the first dimension of the array t.
The block size used in the QR factorization performed in a previous call to nag_lapack_zgeqrt (f08ap); this value must remain unchanged from that call.
Constraints:
  • nb1;
  • if k>0, nbk.

Output Parameters

1:     cldc: – complex array
The first dimension of the array c will be max1,m.
The second dimension of the array c will be max1,n.
c stores QC or QHC or CQ or CQH as specified by side and trans.
2:     info int64int32nag_int scalar
info=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

   info<0
If info=-i, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

Accuracy

The computed result differs from the exact result by a matrix E such that
E2 = Oε C2 ,  
where ε is the machine precision.

Further Comments

The total number of real floating-point operations is approximately 8nk 2m-k  if side='L' and 8mk 2n-k  if side='R'.
The real analogue of this function is nag_lapack_dgemqrt (f08ac).

Example

See Example in nag_lapack_zgeqrt (f08ap).
function f08aq_example


fprintf('f08aq example results\n\n');

% Minimize ||Ax - b|| using recursive QR for m-by-n A and m-by-p B

m = int64(6);
n = int64(4);
p = int64(2);

a = [ 0.96 - 0.81i,  -0.03 + 0.96i,  -0.91 + 2.06i,  -0.05 + 0.41i;
     -0.98 + 1.98i,  -1.20 + 0.19i,  -0.66 + 0.42i,  -0.81 + 0.56i;
      0.62 - 0.46i,   1.01 + 0.02i,   0.63 - 0.17i,  -1.11 + 0.60i;
     -0.37 + 0.38i,   0.19 - 0.54i,  -0.98 - 0.36i,   0.22 - 0.20i;
      0.83 + 0.51i,   0.20 + 0.01i,  -0.17 - 0.46i,   1.47 + 1.59i;
      1.08 - 0.28i,   0.20 - 0.12i,  -0.07 + 1.23i,   0.26 + 0.26i];
b = [-2.09 + 1.93i,   3.26-2.70i;
      3.34 - 3.53i,  -6.22+1.16i;
     -4.94 - 2.04i,   7.94-3.13i;
      0.17 + 4.23i,   1.04-4.26i;
     -5.19 + 3.63i,  -2.31-2.12i;
      0.98 + 2.53i,  -1.39-4.05i];

 
% Compute the QR Factorisation of A
[QR, T, info] = f08ap(n,a);

% Compute C = (C1) = (Q^H)*B
[c1, info] = f08aq(...
                  'Left', 'Conjugate Transpose', QR, T, b);

% Compute least-squares solutions by backsubstitution in R*X = C1
[x, info] = f07ts(...
                  'Upper', 'No Transpose', 'Non-Unit', QR, c1, 'n', n);

% Print least-squares solutions
disp('Least-squares solutions');
disp(x(1:n,:));

% Compute and print estimates of the square roots of the residual
% sums of squares
for j=1:p
  rnorm(j) = norm(x(n+1:m,j));
end
fprintf('\nSquare roots of the residual sums of squares\n');
fprintf('%12.2e', rnorm);
fprintf('\n');


f08aq example results

Least-squares solutions
  -0.5044 - 1.2179i   0.7629 + 1.4529i
  -2.4281 + 2.8574i   5.1570 - 3.6089i
   1.4872 - 2.1955i  -2.6518 + 2.1203i
   0.4537 + 2.6904i  -2.7606 + 0.3318i


Square roots of the residual sums of squares
    6.88e-02    1.87e-01

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015