hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_lapack_zhptri (f07pw)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_lapack_zhptri (f07pw) computes the inverse of a complex Hermitian indefinite matrix A, where A has been factorized by nag_lapack_zhptrf (f07pr), using packed storage.

Syntax

[ap, info] = f07pw(uplo, ap, ipiv, 'n', n)
[ap, info] = nag_lapack_zhptri(uplo, ap, ipiv, 'n', n)

Description

nag_lapack_zhptri (f07pw) is used to compute the inverse of a complex Hermitian indefinite matrix A, the function must be preceded by a call to nag_lapack_zhptrf (f07pr), which computes the Bunch–Kaufman factorization of A, using packed storage.
If uplo='U', A=PUDUHPT and A-1 is computed by solving UHPTXPU=D-1 for X.
If uplo='L', A=PLDLHPT and A-1 is computed by solving LHPTXPL=D-1 for X.

References

Du Croz J J and Higham N J (1992) Stability of methods for matrix inversion IMA J. Numer. Anal. 12 1–19

Parameters

Compulsory Input Parameters

1:     uplo – string (length ≥ 1)
Specifies how A has been factorized.
uplo='U'
A=PUDUHPT, where U is upper triangular.
uplo='L'
A=PLDLHPT, where L is lower triangular.
Constraint: uplo='U' or 'L'.
2:     ap: – complex array
The dimension of the array ap must be at least max1,n×n+1/2
The factorization of A stored in packed form, as returned by nag_lapack_zhptrf (f07pr).
3:     ipiv: int64int32nag_int array
The dimension of the array ipiv must be at least max1,n
Details of the interchanges and the block structure of D, as returned by nag_lapack_zhptrf (f07pr).

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the dimension of the array ipiv.
n, the order of the matrix A.
Constraint: n0.

Output Parameters

1:     ap: – complex array
The dimension of the array ap will be max1,n×n+1/2
The factorization stores the n by n matrix A-1.
More precisely,
  • if uplo='U', the upper triangle of A-1 must be stored with element Aij in api+jj-1/2 for ij;
  • if uplo='L', the lower triangle of A-1 must be stored with element Aij in api+2n-jj-1/2 for ij.
2:     info int64int32nag_int scalar
info=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Cases prefixed with W are classified as warnings and do not generate an error of type NAG:error_n. See nag_issue_warnings.

   info<0
If info=-i, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.
W  info>0
Element _ of the diagonal is exactly zero. D is singular and the inverse of A cannot be computed.

Accuracy

The computed inverse X satisfies a bound of the form cn is a modest linear function of n, and ε is the machine precision

Further Comments

The total number of real floating-point operations is approximately 83n3.
The real analogue of this function is nag_lapack_dsptri (f07pj).

Example

This example computes the inverse of the matrix A, where
A= -1.36+0.00i 1.58+0.90i 2.21-0.21i 3.91+1.50i 1.58-0.90i -8.87+0.00i -1.84-0.03i -1.78+1.18i 2.21+0.21i -1.84+0.03i -4.63+0.00i 0.11+0.11i 3.91-1.50i -1.78-1.18i 0.11-0.11i -1.84+0.00i .  
Here A is Hermitian indefinite, stored in packed form, and must first be factorized by nag_lapack_zhptrf (f07pr).
function f07pw_example


fprintf('f07pw example results\n\n');

% Hermitian indefinite matrix A (Lower triangular part stored in packed form)
uplo = 'L';
n = int64(4);
ap = [-1.36 + 0i;  1.58 - 0.9i;   2.21 + 0.21i;  3.91 - 1.5i;
                  -8.87 + 0i;    -1.84 + 0.03i; -1.78 - 1.18i;
                                 -4.63 + 0i;     0.11 - 0.11i;
                                                -1.84 + 0i];

% Factorize
[apf, ipiv, info] = f07pr( ...
                           uplo, n, ap);

% Invert
[ainv, info] = f07pw( ...
                      uplo, apf, ipiv);

[ifail] = x04dc( ...
                 uplo, 'Non-unit', n, ainv, 'Inverse');


f07pw example results

 Inverse
          1       2       3       4
 1   0.0826
     0.0000

 2  -0.0335 -0.1408
     0.0440  0.0000

 3   0.0603  0.0422 -0.2007
    -0.0105 -0.0222  0.0000

 4   0.2391  0.0304  0.0982  0.0073
    -0.0926  0.0203 -0.0635  0.0000

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015