hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_lapack_zsysv (f07nn)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_lapack_zsysv (f07nn) computes the solution to a complex system of linear equations
AX=B ,  
where A is an n by n symmetric matrix and X and B are n by r matrices.

Syntax

[a, ipiv, b, info] = f07nn(uplo, a, b, 'n', n, 'nrhs_p', nrhs_p)
[a, ipiv, b, info] = nag_lapack_zsysv(uplo, a, b, 'n', n, 'nrhs_p', nrhs_p)

Description

nag_lapack_zsysv (f07nn) uses the diagonal pivoting method to factor A as A=UDUT if uplo='U' or A=LDLT if uplo='L', where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is symmetric and block diagonal with 1 by 1 and 2 by 2 diagonal blocks. The factored form of A is then used to solve the system of equations AX=B.

References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore
Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

Parameters

Compulsory Input Parameters

1:     uplo – string (length ≥ 1)
If uplo='U', the upper triangle of A is stored.
If uplo='L', the lower triangle of A is stored.
Constraint: uplo='U' or 'L'.
2:     alda: – complex array
The first dimension of the array a must be at least max1,n.
The second dimension of the array a must be at least max1,n.
The n by n symmetric matrix A.
  • If uplo='U', the upper triangular part of a must be stored and the elements of the array below the diagonal are not referenced.
  • If uplo='L', the lower triangular part of a must be stored and the elements of the array above the diagonal are not referenced.
3:     bldb: – complex array
The first dimension of the array b must be at least max1,n.
The second dimension of the array b must be at least max1,nrhs_p.
Note: to solve the equations Ax=b, where b is a single right-hand side, b may be supplied as a one-dimensional array with length ldb=max1,n.
The n by r right-hand side matrix B.

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the first dimension of the arrays a, b and the second dimension of the array a.
n, the number of linear equations, i.e., the order of the matrix A.
Constraint: n0.
2:     nrhs_p int64int32nag_int scalar
Default: the second dimension of the array b.
r, the number of right-hand sides, i.e., the number of columns of the matrix B.
Constraint: nrhs_p0.

Output Parameters

1:     alda: – complex array
The first dimension of the array a will be max1,n.
The second dimension of the array a will be max1,n.
If info=0, the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization A=UDUT or A=LDLT as computed by nag_lapack_zsytrf (f07nr).
2:     ipiv: int64int32nag_int array
The dimension of the array ipiv will be max1,n
Details of the interchanges and the block structure of D. More precisely,
  • if ipivi=k>0, dii is a 1 by 1 pivot block and the ith row and column of A were interchanged with the kth row and column;
  • if uplo='U' and ipivi-1=ipivi=-l<0, di-1,i-1d-i,i-1 d-i,i-1dii is a 2 by 2 pivot block and the i-1th row and column of A were interchanged with the lth row and column;
  • if uplo='L' and ipivi=ipivi+1=-m<0, diidi+1,idi+1,idi+1,i+1 is a 2 by 2 pivot block and the i+1th row and column of A were interchanged with the mth row and column.
3:     bldb: – complex array
The first dimension of the array b will be max1,n.
The second dimension of the array b will be max1,nrhs_p.
Note: to solve the equations Ax=b, where b is a single right-hand side, b may be supplied as a one-dimensional array with length ldb=max1,n.
If info=0, the n by r solution matrix X.
4:     info int64int32nag_int scalar
info=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Cases prefixed with W are classified as warnings and do not generate an error of type NAG:error_n. See nag_issue_warnings.

   info<0
If info=-i, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.
W  info>0
Element _ of the diagonal is exactly zero. The factorization has been completed, but the block diagonal matrix D is exactly singular, so the solution could not be computed.

Accuracy

The computed solution for a single right-hand side, x^ , satisfies an equation of the form
A+E x^=b ,  
where
E1 = Oε A1  
and ε  is the machine precision. An approximate error bound for the computed solution is given by
x^-x1 x1 κA E1 A1 ,  
where κA = A-11 A1 , the condition number of A  with respect to the solution of the linear equations. See Section 4.4 of Anderson et al. (1999) and Chapter 11 of Higham (2002) for further details.
nag_lapack_zsysvx (f07np) is a comprehensive LAPACK driver that returns forward and backward error bounds and an estimate of the condition number. Alternatively, nag_linsys_complex_symm_solve (f04dh) solves Ax=b  and returns a forward error bound and condition estimate. nag_linsys_complex_symm_solve (f04dh) calls nag_lapack_zsysv (f07nn) to solve the equations.

Further Comments

The total number of floating-point operations is approximately 43 n3 + 8n2r , where r  is the number of right-hand sides.
The real analogue of this function is nag_lapack_dsysv (f07ma). The complex Hermitian analogue of this function is nag_lapack_zhesv (f07mn).

Example

This example solves the equations
Ax=b ,  
where A  is the complex symmetric matrix
A = -0.56+0.12i -1.54-2.86i 5.32-1.59i 3.80+0.92i -1.54-2.86i -2.83-0.03i -3.52+0.58i -7.86-2.96i 5.32-1.59i -3.52+0.58i 8.86+1.81i 5.14-0.64i 3.80+0.92i -7.86-2.96i 5.14-0.64i -0.39-0.71i  
and
b = -6.43+19.24i -0.49-01.47i -48.18+66.00i -55.64+41.22i .  
Details of the factorization of A  are also output.
function f07nn_example


fprintf('f07nn example results\n\n');

% Symmetric indefinite matrix A (Upper triangular part stored)
uplo = 'Upper';
a = [-0.56 + 0.12i, -1.54 - 2.86i,  5.32 - 1.59i,  3.80 + 0.92i;
      0    + 0i,    -2.83 - 0.03i, -3.52 + 0.58i, -7.86 - 2.96i;
      0    + 0i,     0    + 0i,     8.86 + 1.81i,  5.14 - 0.64i;
      0    + 0i,     0    + 0i,     0    + 0i,    -0.39 - 0.71i];

% RHS
b = [ -6.43 + 19.24i;
      -0.49 -  1.47i;
     -48.18 + 66.00i;
     -55.64 + 41.22i];

% Solve
[af, ipiv, x, info] = f07nn( ...
                             uplo, a, b);

disp('Solution');
disp(x);

[ifail] = x04da( ...
                 uplo, 'Non-unit', af, 'Details of factorization');

fprintf('\nPivot indices\n   ');
fprintf('%11d', ipiv);
fprintf('\n');


f07nn example results

Solution
  -4.0000 + 3.0000i
   3.0000 - 2.0000i
  -2.0000 + 5.0000i
   1.0000 - 1.0000i

 Details of factorization
             1          2          3          4
 1     -2.0954    -0.1071    -0.4823     0.4426
       -2.2011    -0.3157     0.0150     0.1936

 2                 4.4079    -0.6078     0.5279
                   5.3991     0.2811    -0.3715

 3                           -2.8300    -7.8600
                             -0.0300    -2.9600

 4                                      -0.3900
                                        -0.7100

Pivot indices
             1          2         -2         -2

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015