hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_lapack_zptrfs (f07jv)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_lapack_zptrfs (f07jv) computes error bounds and refines the solution to a complex system of linear equations AX=B , where A  is an n  by n  Hermitian positive definite tridiagonal matrix and X  and B  are n  by r  matrices, using the modified Cholesky factorization returned by nag_lapack_zpttrf (f07jr) and an initial solution returned by nag_lapack_zpttrs (f07js). Iterative refinement is used to reduce the backward error as much as possible.

Syntax

[x, ferr, berr, info] = f07jv(uplo, d, e, df, ef, b, x, 'n', n, 'nrhs_p', nrhs_p)
[x, ferr, berr, info] = nag_lapack_zptrfs(uplo, d, e, df, ef, b, x, 'n', n, 'nrhs_p', nrhs_p)

Description

nag_lapack_zptrfs (f07jv) should normally be preceded by calls to nag_lapack_zpttrf (f07jr) and nag_lapack_zpttrs (f07js). nag_lapack_zpttrf (f07jr) computes a modified Cholesky factorization of the matrix A  as
A=LDLH ,  
where L  is a unit lower bidiagonal matrix and D  is a diagonal matrix, with positive diagonal elements. nag_lapack_zpttrs (f07js) then utilizes the factorization to compute a solution, X^ , to the required equations. Letting x^  denote a column of X^ , nag_lapack_zptrfs (f07jv) computes a component-wise backward error, β , the smallest relative perturbation in each element of A  and b  such that x^  is the exact solution of a perturbed system
A+E x^ = b + f , with  eij β aij , and  fj β bj .  
The function also estimates a bound for the component-wise forward error in the computed solution defined by max xi - xi^ / max xi^ , where x  is the corresponding column of the exact solution, X .
Note that the modified Cholesky factorization of A  can also be expressed as
A=UHDU ,  
where U  is unit upper bidiagonal.

References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug

Parameters

Compulsory Input Parameters

1:     uplo – string (length ≥ 1)
Specifies the form of the factorization as follows:
uplo='U'
A=UHDU.
uplo='L'
A=LDLH.
Constraint: uplo='U' or 'L'.
2:     d: – double array
The dimension of the array d must be at least max1,n
Must contain the n diagonal elements of the matrix of A.
3:     e: – complex array
The dimension of the array e must be at least max1,n-1
If uplo='U', e must contain the n-1 superdiagonal elements of the matrix A.
If uplo='L', e must contain the n-1 subdiagonal elements of the matrix A.
4:     df: – double array
The dimension of the array df must be at least max1,n
Must contain the n diagonal elements of the diagonal matrix D from the LDLT factorization of A.
5:     ef: – complex array
The dimension of the array ef must be at least max1,n-1
If uplo='U', ef must contain the n-1 superdiagonal elements of the unit upper bidiagonal matrix U from the UHDU factorization of A.
If uplo='L', ef must contain the n-1 subdiagonal elements of the unit lower bidiagonal matrix L from the LDLH factorization of A.
6:     bldb: – complex array
The first dimension of the array b must be at least max1,n.
The second dimension of the array b must be at least max1,nrhs_p.
The n by r matrix of right-hand sides B.
7:     xldx: – complex array
The first dimension of the array x must be at least max1,n.
The second dimension of the array x must be at least max1,nrhs_p.
The n by r initial solution matrix X.

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the first dimension of the arrays b, x and the dimension of the arrays d, df.
n, the order of the matrix A.
Constraint: n0.
2:     nrhs_p int64int32nag_int scalar
Default: the second dimension of the arrays b, x.
r, the number of right-hand sides, i.e., the number of columns of the matrix B.
Constraint: nrhs_p0.

Output Parameters

1:     xldx: – complex array
The first dimension of the array x will be max1,n.
The second dimension of the array x will be max1,nrhs_p.
The n by r refined solution matrix X.
2:     ferrnrhs_p – double array
Estimate of the forward error bound for each computed solution vector, such that x^j-xj/x^jferrj, where x^j is the jth column of the computed solution returned in the array x and xj is the corresponding column of the exact solution X. The estimate is almost always a slight overestimate of the true error.
3:     berrnrhs_p – double array
Estimate of the component-wise relative backward error of each computed solution vector x^j (i.e., the smallest relative change in any element of A or B that makes x^j an exact solution).
4:     info int64int32nag_int scalar
info=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

   info<0
If info=-i, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

Accuracy

The computed solution for a single right-hand side, x^ , satisfies an equation of the form
A+E x^=b ,  
where
E=OεA  
and ε  is the machine precision. An approximate error bound for the computed solution is given by
x^ - x x κA E A ,  
where κA=A-1 A , the condition number of A  with respect to the solution of the linear equations. See Section 4.4 of Anderson et al. (1999) for further details.
Function nag_lapack_zptcon (f07ju) can be used to compute the condition number of A .

Further Comments

The total number of floating-point operations required to solve the equations AX=B  is proportional to nr . At most five steps of iterative refinement are performed, but usually only one or two steps are required.
The real analogue of this function is nag_lapack_dptrfs (f07jh).

Example

This example solves the equations
AX=B ,  
where A  is the Hermitian positive definite tridiagonal matrix
A = 16.0i+00.0 16.0-16.0i 0.0i+0.0 0.0i+0.0 16.0+16.0i 41.0i+00.0 18.0+9.0i 0.0i+0.0 0.0i+00.0 18.0-09.0i 46.0i+0.0 1.0+4.0i 0.0i+00.0 0.0i+00.0 1.0-4.0i 21.0i+0.0  
and
B = 64.0+16.0i -16.0-32.0i 93.0+62.0i 61.0-66.0i 78.0-80.0i 71.0-74.0i 14.0-27.0i 35.0+15.0i .  
Estimates for the backward errors and forward errors are also output.
function f07jv_example


fprintf('f07jv example results\n\n');

% Hermitian tridiagonal A stored as two diagonals
d = [ 16            41          46            21];
e = [ 16 + 16i      18 - 9i      1 - 4i         ];

% Factorize
[df, ef, info] = f07jr( ...
                        d, e);

% RHS
b = [ 64 + 16i,  -16 - 32i;
      93 + 62i,   61 - 66i;
      78 - 80i,   71 - 74i;
      14 - 27i,   35 + 15i];

% Solve
uplo = 'L';
[x, info] = f07js( ...
                   uplo, df, ef, b);


% Refine
[x, ferr, berr, info] = f07jv( ...
                               uplo, d, e, df, ef, b, x);

disp('Solution(s)');
disp(x);
fprintf('Forward  error bounds = %10.1e  %10.1e\n',ferr); 
fprintf('Backward error bounds = %10.1e  %10.1e\n',berr); 


f07jv example results

Solution(s)
   2.0000 + 1.0000i  -3.0000 - 2.0000i
   1.0000 + 1.0000i   1.0000 + 1.0000i
   1.0000 - 2.0000i   1.0000 - 2.0000i
   1.0000 - 1.0000i   2.0000 + 1.0000i

Forward  error bounds =    9.0e-12     6.1e-12
Backward error bounds =    0.0e+00     0.0e+00

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015