hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_lapack_zptsv (f07jn)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_lapack_zptsv (f07jn) computes the solution to a complex system of linear equations
AX=B ,  
where A is an n by n Hermitian positive definite tridiagonal matrix, and X and B are n by r matrices.

Syntax

[d, e, b, info] = f07jn(d, e, b, 'n', n, 'nrhs_p', nrhs_p)
[d, e, b, info] = nag_lapack_zptsv(d, e, b, 'n', n, 'nrhs_p', nrhs_p)

Description

nag_lapack_zptsv (f07jn) factors A as A=LDLH. The factored form of A is then used to solve the system of equations.

References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

Parameters

Compulsory Input Parameters

1:     d: – double array
The dimension of the array d must be at least max1,n
The n diagonal elements of the tridiagonal matrix A.
2:     e: – complex array
The dimension of the array e must be at least max1,n-1
The n-1 subdiagonal elements of the tridiagonal matrix A.
3:     bldb: – complex array
The first dimension of the array b must be at least max1,n.
The second dimension of the array b must be at least max1,nrhs_p.
The n by r right-hand side matrix B.

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the first dimension of the array b and the dimension of the array d.
n, the order of the matrix A.
Constraint: n0.
2:     nrhs_p int64int32nag_int scalar
Default: the second dimension of the array b.
r, the number of right-hand sides, i.e., the number of columns of the matrix B.
Constraint: nrhs_p0.

Output Parameters

1:     d: – double array
The dimension of the array d will be max1,n
The n diagonal elements of the diagonal matrix D from the factorization A=LDLH.
2:     e: – complex array
The dimension of the array e will be max1,n-1
The n-1 subdiagonal elements of the unit bidiagonal factor L from the LDLH factorization of A. (e can also be regarded as the superdiagonal of the unit bidiagonal factor U from the UHDU factorization of A.)
3:     bldb: – complex array
The first dimension of the array b will be max1,n.
The second dimension of the array b will be max1,nrhs_p.
If info=0, the n by r solution matrix X.
4:     info int64int32nag_int scalar
info=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

   info<0
If info=-i, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.
   info>0
The leading minor of order _ is not positive definite, and the solution has not been computed.

Accuracy

The computed solution for a single right-hand side, x^ , satisfies an equation of the form
A+E x^=b ,  
where
E1 = Oε A1  
and ε  is the machine precision. An approximate error bound for the computed solution is given by
x^-x1 x1 κA E1 A1 ,  
where κ A = A-11 A1 , the condition number of A  with respect to the solution of the linear equations. See Section 4.4 of Anderson et al. (1999) for further details.
nag_lapack_zptsvx (f07jp) is a comprehensive LAPACK driver that returns forward and backward error bounds and an estimate of the condition number. Alternatively, nag_linsys_complex_posdef_tridiag_solve (f04cg) solves Ax=b  and returns a forward error bound and condition estimate. nag_linsys_complex_posdef_tridiag_solve (f04cg) calls nag_lapack_zptsv (f07jn) to solve the equations.

Further Comments

The number of floating-point operations required for the factorization of A  is proportional to n , and the number of floating-point operations required for the solution of the equations is proportional to nr , where r  is the number of right-hand sides.
The real analogue of this function is nag_lapack_dptsv (f07ja).

Example

This example solves the equations
Ax=b ,  
where A  is the Hermitian positive definite tridiagonal matrix
A = 16.0i+00.0 16.0-16.0i 0.0i+0.0 0.0i+0.0 16.0+16.0i 41.0i+00.0 18.0+9.0i 0.0i+0.0 0.0i+00.0 18.0-09.0i 46.0i+0.0 1.0+4.0i 0.0i+00.0 0.0i+00.0 1.0-4.0i 21.0i+0.0  
and
b = 64.0+16.0i 93.0+62.0i 78.0-80.0i 14.0-27.0i .  
Details of the LDLH  factorization of A  are also output.
function f07jn_example


fprintf('f07jn example results\n\n');

% Hermitian tridiagonal A stored as two diagonals
d = [ 16            41          46            21];
e = [ 16 + 16i      18 - 9i      1 - 4i         ];

%RHS
b = [ 64 + 16i;
      93 + 62i;
      78 - 80i;
      14 - 27i];

%Solve
[df, ef, x, info] = f07jn( ...
                           d, e, b);

disp('Solution');
disp(x);
disp('Diagonal elements of the diagonal matrix D');
disp(df);
disp('Sub-diagonal elements of the Cholesky factor L');
disp(ef);


f07jn example results

Solution
   2.0000 + 1.0000i
   1.0000 + 1.0000i
   1.0000 - 2.0000i
   1.0000 - 1.0000i

Diagonal elements of the diagonal matrix D
    16     9     1     4

Sub-diagonal elements of the Cholesky factor L
   1.0000 + 1.0000i   2.0000 - 1.0000i   1.0000 - 4.0000i


PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015