hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_lapack_dptrfs (f07jh)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_lapack_dptrfs (f07jh) computes error bounds and refines the solution to a real system of linear equations AX=B , where A  is an n  by n  symmetric positive definite tridiagonal matrix and X  and B  are n  by r  matrices, using the modified Cholesky factorization returned by nag_lapack_dpttrf (f07jd) and an initial solution returned by nag_lapack_dpttrs (f07je). Iterative refinement is used to reduce the backward error as much as possible.

Syntax

[x, ferr, berr, info] = f07jh(d, e, df, ef, b, x, 'n', n, 'nrhs_p', nrhs_p)
[x, ferr, berr, info] = nag_lapack_dptrfs(d, e, df, ef, b, x, 'n', n, 'nrhs_p', nrhs_p)

Description

nag_lapack_dptrfs (f07jh) should normally be preceded by calls to nag_lapack_dpttrf (f07jd) and nag_lapack_dpttrs (f07je). nag_lapack_dpttrf (f07jd) computes a modified Cholesky factorization of the matrix A  as
A=LDLT ,  
where L  is a unit lower bidiagonal matrix and D  is a diagonal matrix, with positive diagonal elements. nag_lapack_dpttrs (f07je) then utilizes the factorization to compute a solution, X^ , to the required equations. Letting x^  denote a column of X^ , nag_lapack_dptrfs (f07jh) computes a component-wise backward error, β , the smallest relative perturbation in each element of A  and b  such that x^  is the exact solution of a perturbed system
A+E x^ = b + f , with  eij β aij , and  fj β bj .  
The function also estimates a bound for the component-wise forward error in the computed solution defined by max xi - xi^ / max xi^ , where x  is the corresponding column of the exact solution, X .
Note that the modified Cholesky factorization of A  can also be expressed as
A=UTDU ,  
where U  is unit upper bidiagonal.

References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug

Parameters

Compulsory Input Parameters

1:     d: – double array
The dimension of the array d must be at least max1,n
Must contain the n diagonal elements of the matrix of A.
2:     e: – double array
The dimension of the array e must be at least max1,n-1
Must contain the n-1 subdiagonal elements of the matrix A.
3:     df: – double array
The dimension of the array df must be at least max1,n
Must contain the n diagonal elements of the diagonal matrix D from the LDLT factorization of A.
4:     ef: – double array
The dimension of the array ef must be at least max1,n
Must contain the n-1 subdiagonal elements of the unit bidiagonal matrix L from the LDLT factorization of A.
5:     bldb: – double array
The first dimension of the array b must be at least max1,n.
The second dimension of the array b must be at least max1,nrhs_p.
The n by r matrix of right-hand sides B.
6:     xldx: – double array
The first dimension of the array x must be at least max1,n.
The second dimension of the array x must be at least max1,nrhs_p.
The n by r initial solution matrix X.

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the first dimension of the arrays b, x and the dimension of the arrays d, df, ef.
n, the order of the matrix A.
Constraint: n0.
2:     nrhs_p int64int32nag_int scalar
Default: the second dimension of the arrays b, x.
r, the number of right-hand sides, i.e., the number of columns of the matrix B.
Constraint: nrhs_p0.

Output Parameters

1:     xldx: – double array
The first dimension of the array x will be max1,n.
The second dimension of the array x will be max1,nrhs_p.
The n by r refined solution matrix X.
2:     ferrnrhs_p – double array
Estimate of the forward error bound for each computed solution vector, such that x^j-xj/x^jferrj, where x^j is the jth column of the computed solution returned in the array x and xj is the corresponding column of the exact solution X. The estimate is almost always a slight overestimate of the true error.
3:     berrnrhs_p – double array
Estimate of the component-wise relative backward error of each computed solution vector x^j (i.e., the smallest relative change in any element of A or B that makes x^j an exact solution).
4:     info int64int32nag_int scalar
info=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

   info<0
If info=-i, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

Accuracy

The computed solution for a single right-hand side, x^ , satisfies an equation of the form
A+E x^=b ,  
where
E=OεA  
and ε  is the machine precision. An approximate error bound for the computed solution is given by
x^ - x x κA E A ,  
where κA=A-1 A , the condition number of A  with respect to the solution of the linear equations. See Section 4.4 of Anderson et al. (1999) for further details.
Function nag_lapack_dptcon (f07jg) can be used to compute the condition number of A .

Further Comments

The total number of floating-point operations required to solve the equations AX=B  is proportional to nr . At most five steps of iterative refinement are performed, but usually only one or two steps are required.
The complex analogue of this function is nag_lapack_zptrfs (f07jv).

Example

This example solves the equations
AX=B ,  
where A  is the symmetric positive definite tridiagonal matrix
A = 4.0 -2.0 0 0 0 -2.0 10.0 -6.0 0 0 0 -6.0 29.0 15.0 0 0 0 15.0 25.0 8.0 0 0 0 8.0 5.0   and   B = 6.0 10.0 9.0 4.0 2.0 9.0 14.0 65.0 7.0 23.0 .  
Estimates for the backward errors and forward errors are also output.
function f07jh_example


fprintf('f07jh example results\n\n');

% Symmetric tridiagonal A stored as two diagonals
d = [ 4     10     29     25     5];
e = [-2     -6     15     8       ];

% RHS
b = [ 6, 10;
      9,  4;
      2,  9;
     14, 65;
      7, 23];

% Factorize
[df, ef, info] = f07jd( ...
                        d, e);

%Solve
[x, info] = f07je( ...
                   df, ef, b);

% Refine
ef = [ef 0];
[x, ferr, berr, info] = f07jh( ...
                               d, e, df, ef, b, x);

disp('Solution');
disp(x);
fprintf('Forward  error bounds = %10.1e  %10.1e\n',ferr); 
fprintf('Backward error bounds = %10.1e  %10.1e\n',berr); 


f07jh example results

Solution
    2.5000    2.0000
    2.0000   -1.0000
    1.0000   -3.0000
   -1.0000    6.0000
    3.0000   -5.0000

Forward  error bounds =    2.4e-14     4.7e-14
Backward error bounds =    0.0e+00     7.4e-17

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015