hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_lapack_zpbtrs (f07hs)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_lapack_zpbtrs (f07hs) solves a complex Hermitian positive definite band system of linear equations with multiple right-hand sides,
AX=B ,  
where A has been factorized by nag_lapack_zpbtrf (f07hr).

Syntax

[b, info] = f07hs(uplo, kd, ab, b, 'n', n, 'nrhs_p', nrhs_p)
[b, info] = nag_lapack_zpbtrs(uplo, kd, ab, b, 'n', n, 'nrhs_p', nrhs_p)

Description

nag_lapack_zpbtrs (f07hs) is used to solve a complex Hermitian positive definite band system of linear equations AX=B, the function must be preceded by a call to nag_lapack_zpbtrf (f07hr) which computes the Cholesky factorization of A. The solution X is computed by forward and backward substitution.
If uplo='U', A=UHU, where U is upper triangular; the solution X is computed by solving UHY=B and then UX=Y.
If uplo='L', A=LLH, where L is lower triangular; the solution X is computed by solving LY=B and then LHX=Y.

References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

Parameters

Compulsory Input Parameters

1:     uplo – string (length ≥ 1)
Specifies how A has been factorized.
uplo='U'
A=UHU, where U is upper triangular.
uplo='L'
A=LLH, where L is lower triangular.
Constraint: uplo='U' or 'L'.
2:     kd int64int32nag_int scalar
kd, the number of superdiagonals or subdiagonals of the matrix A.
Constraint: kd0.
3:     abldab: – complex array
The first dimension of the array ab must be at least kd+1.
The second dimension of the array ab must be at least max1,n.
The Cholesky factor of A, as returned by nag_lapack_zpbtrf (f07hr).
4:     bldb: – complex array
The first dimension of the array b must be at least max1,n.
The second dimension of the array b must be at least max1,nrhs_p.
The n by r right-hand side matrix B.

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the second dimension of the array ab.
n, the order of the matrix A.
Constraint: n0.
2:     nrhs_p int64int32nag_int scalar
Default: the second dimension of the array b.
r, the number of right-hand sides.
Constraint: nrhs_p0.

Output Parameters

1:     bldb: – complex array
The first dimension of the array b will be max1,n.
The second dimension of the array b will be max1,nrhs_p.
The n by r solution matrix X.
2:     info int64int32nag_int scalar
info=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

   info<0
If info=-i, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of equations A+Ex=b, where ck+1 is a modest linear function of k+1, and ε is the machine precision
If x^ is the true solution, then the computed solution x satisfies a forward error bound of the form
x-x^ x ck+1condA,xε  
where condA,x=A-1Ax/xcondA=A-1AκA. Note that condA,x can be much smaller than condA.
Forward and backward error bounds can be computed by calling nag_lapack_zpbrfs (f07hv), and an estimate for κA (=κ1A) can be obtained by calling nag_lapack_zpbcon (f07hu).

Further Comments

The total number of real floating-point operations is approximately 16nkr, assuming nk.
This function may be followed by a call to nag_lapack_zpbrfs (f07hv) to refine the solution and return an error estimate.
The real analogue of this function is nag_lapack_dpbtrs (f07he).

Example

This example solves the system of equations AX=B, where
A= 9.39+0.00i 1.08-1.73i 0.00+0.00i 0.00+0.00i 1.08+1.73i 1.69+0.00i -0.04+0.29i 0.00+0.00i 0.00+0.00i -0.04-0.29i 2.65+0.00i -0.33+2.24i 0.00+0.00i 0.00+0.00i -0.33-2.24i 2.17+0.00i  
and
B= -12.42+68.42i 54.30-56.56i -9.93+00.88i 18.32+04.76i -27.30-00.01i -4.40+09.97i 5.31+23.63i 9.43+01.41i .  
Here A is Hermitian positive definite, and is treated as a band matrix, which must first be factorized by nag_lapack_zpbtrf (f07hr).
function f07hs_example


fprintf('f07hs example results\n\n');

% A in Hermitian banded format
uplo = 'L';
kd = int64(1);
n  = int64(4);
ab = [ 9.39 + 0i,     1.69 + 0i,      2.65 + 0i,      2.17 + 0i;
       1.08 + 1.73i, -0.04 - 0.29i,  -0.33 - 2.24i    0    + 0i];

% RHS
b = [-12.42 + 68.42i,  54.30 - 56.56i;
      -9.93 +  0.88i,  18.32 +  4.76i;
     -27.30 -  0.01i,  -4.40 +  9.97i;
       5.31 + 23.63i,   9.43 +  1.41i];

% Factorize
[abf, info] = f07hr( ...
                     uplo, kd, ab);

% Solve
[x, info] = f07hs( ...
                   uplo, kd, abf, b);

disp('Solution(s)');
disp(x);


f07hs example results

Solution(s)
  -1.0000 + 8.0000i   5.0000 - 6.0000i
   2.0000 - 3.0000i   2.0000 + 3.0000i
  -4.0000 - 5.0000i  -8.0000 + 4.0000i
   7.0000 + 6.0000i  -1.0000 - 7.0000i


PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015