hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_lapack_dpbtrs (f07he)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_lapack_dpbtrs (f07he) solves a real symmetric positive definite band system of linear equations with multiple right-hand sides,
AX=B ,  
where A has been factorized by nag_lapack_dpbtrf (f07hd).

Syntax

[b, info] = f07he(uplo, kd, ab, b, 'n', n, 'nrhs_p', nrhs_p)
[b, info] = nag_lapack_dpbtrs(uplo, kd, ab, b, 'n', n, 'nrhs_p', nrhs_p)

Description

nag_lapack_dpbtrs (f07he) is used to solve a real symmetric positive definite band system of linear equations AX=B, the function must be preceded by a call to nag_lapack_dpbtrf (f07hd) which computes the Cholesky factorization of A. The solution X is computed by forward and backward substitution.
If uplo='U', A=UTU, where U is upper triangular; the solution X is computed by solving UTY=B and then UX=Y.
If uplo='L', A=LLT, where L is lower triangular; the solution X is computed by solving LY=B and then LTX=Y.

References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

Parameters

Compulsory Input Parameters

1:     uplo – string (length ≥ 1)
Specifies how A has been factorized.
uplo='U'
A=UTU, where U is upper triangular.
uplo='L'
A=LLT, where L is lower triangular.
Constraint: uplo='U' or 'L'.
2:     kd int64int32nag_int scalar
kd, the number of superdiagonals or subdiagonals of the matrix A.
Constraint: kd0.
3:     abldab: – double array
The first dimension of the array ab must be at least kd+1.
The second dimension of the array ab must be at least max1,n.
The Cholesky factor of A, as returned by nag_lapack_dpbtrf (f07hd).
4:     bldb: – double array
The first dimension of the array b must be at least max1,n.
The second dimension of the array b must be at least max1,nrhs_p.
The n by r right-hand side matrix B.

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the second dimension of the array ab.
n, the order of the matrix A.
Constraint: n0.
2:     nrhs_p int64int32nag_int scalar
Default: the second dimension of the array b.
r, the number of right-hand sides.
Constraint: nrhs_p0.

Output Parameters

1:     bldb: – double array
The first dimension of the array b will be max1,n.
The second dimension of the array b will be max1,nrhs_p.
The n by r solution matrix X.
2:     info int64int32nag_int scalar
info=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

   info<0
If info=-i, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of equations A+Ex=b, where ck+1 is a modest linear function of k+1, and ε is the machine precision
If x^ is the true solution, then the computed solution x satisfies a forward error bound of the form
x-x^ x ck+1condA,xε  
where condA,x=A-1Ax/xcondA=A-1AκA. Note that condA,x can be much smaller than condA.
Forward and backward error bounds can be computed by calling nag_lapack_dpbrfs (f07hh), and an estimate for κA (=κ1A) can be obtained by calling nag_lapack_dpbcon (f07hg).

Further Comments

The total number of floating-point operations is approximately 4nkr, assuming nk.
This function may be followed by a call to nag_lapack_dpbrfs (f07hh) to refine the solution and return an error estimate.
The complex analogue of this function is nag_lapack_zpbtrs (f07hs).

Example

This example solves the system of equations AX=B, where
A= 5.49 2.68 0.00 0.00 2.68 5.63 -2.39 0.00 0.00 -2.39 2.60 -2.22 0.00 0.00 -2.22 5.17   and   B= 22.09 5.10 9.31 30.81 -5.24 -25.82 11.83 22.90 .  
Here A is symmetric and positive definite, and is treated as a band matrix, which must first be factorized by nag_lapack_dpbtrf (f07hd).
function f07he_example


fprintf('f07he example results\n\n');

% Symmetric A (one lower/upper off-diagonal) in banded form 
uplo = 'Lower';
kd = int64(1);
n  = int64(4);
ab = [5.49,  5.63,  2.60, 5.17;
      2.68, -2.39, -2.22, 0.00];

% Factorize
[abf, info] = f07hd( ...
                     uplo, kd, ab);

% RHS
b  = [22.09,   5.1;
       9.31,  30.81;
      -5.24, -25.82;
      11.83,  22.9];

% Solve Ax = B
[x, info] = f07he( ...
                   uplo, kd, abf, b);

disp('Solution:');
disp(x);


f07he example results

Solution:
    5.0000   -2.0000
   -2.0000    6.0000
   -3.0000   -1.0000
    1.0000    4.0000


PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015