hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_lapack_zpoequ (f07ft)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_lapack_zpoequ (f07ft) computes a diagonal scaling matrix S  intended to equilibrate a complex n  by n  Hermitian positive definite matrix A  and reduce its condition number.

Syntax

[s, scond, amax, info] = f07ft(a, 'n', n)
[s, scond, amax, info] = nag_lapack_zpoequ(a, 'n', n)

Description

nag_lapack_zpoequ (f07ft) computes a diagonal scaling matrix S  chosen so that
sj=1 / ajj .  
This means that the matrix B  given by
B=SAS ,  
has diagonal elements equal to unity. This in turn means that the condition number of B , κ2B , is within a factor n  of the matrix of smallest possible condition number over all possible choices of diagonal scalings (see Corollary 7.6 of Higham (2002)).

References

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

Parameters

Compulsory Input Parameters

1:     alda: – complex array
The first dimension of the array a must be at least max1,n.
The second dimension of the array a must be at least max1,n.
The matrix A whose scaling factors are to be computed. Only the diagonal elements of the array a are referenced.

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the first dimension of the array a and the second dimension of the array a.
n, the order of the matrix A.
Constraint: n0.

Output Parameters

1:     sn – double array
If info=0, s contains the diagonal elements of the scaling matrix S.
2:     scond – double scalar
If info=0, scond contains the ratio of the smallest value of s to the largest value of s. If scond0.1 and amax is neither too large nor too small, it is not worth scaling by S.
3:     amax – double scalar
maxaij. If amax is very close to overflow or underflow, the matrix A should be scaled.
4:     info int64int32nag_int scalar
info=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

   info<0
If info=-i, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.
   info>0
The _th diagonal element of A is not positive (and hence A cannot be positive definite).

Accuracy

The computed scale factors will be close to the exact scale factors.

Further Comments

The real analogue of this function is nag_lapack_dpoequ (f07ff).

Example

This example equilibrates the Hermitian positive definite matrix A  given by
A = (3.23 -(1.51-1.92i 1.90+0.84i×1050 -0.42+2.50i (1.51+1.92i -(3.58 -0.23+1.11i×1050 -1.18+1.37i 1.90-0.84i×105 -0.23-1.11i×105 -4.09×1010 (2.33-0.14i×105 (0.42-2.50i (-1.18-1.37i 2.33+0.14i×1050 -4.29 .  
Details of the scaling factors and the scaled matrix are output.
function f07ft_example


fprintf('f07ft example results\n\n');

a = [3.23 + 0i    1.51 - 1.92i  1.90e+05 + 8.40e+04i   0.42     + 2.50i;
     0    + 0i    3.58 + 0i    -2.30e+04 + 1.11e+05i  -1.18     + 1.37i;
     0    + 0i    0    + 0i     4.09e+10 + 0i          2.33e+05 - 1.40e+04i;
     0    + 0i    0    + 0i     0        + 0i          4.29     + 0i];

% Scale A
[s, scond, amax, info] = f07ft(a);

fprintf('scond = %8.1e, amax = %8.1e\n\n', scond, amax);
disp('Diagonal scaling factors');
fprintf('%10.1e',s);
fprintf('\n\n');

% Scaled matrix
as = diag(s)*a*diag(s);

[ifail] = x04da( ...
                 'Upper', 'Non-unit', as, 'Scaled matrix');


f07ft example results

scond =  8.9e-06, amax =  4.1e+10

Diagonal scaling factors
   5.6e-01   5.3e-01   4.9e-06   4.8e-01

 Scaled matrix
          1       2       3       4
 1   1.0000  0.4441  0.5227  0.1128
     0.0000 -0.5646  0.2311  0.6716

 2           1.0000 -0.0601 -0.3011
             0.0000  0.2901  0.3496

 3                   1.0000  0.5562
                     0.0000 -0.0334

 4                           1.0000
                             0.0000

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015