hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_lapack_zgbtrs (f07bs)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_lapack_zgbtrs (f07bs) solves a complex band system of linear equations with multiple right-hand sides,
AX=B ,  ATX=B   or   AHX=B ,  
where A has been factorized by nag_lapack_zgbtrf (f07br).

Syntax

[b, info] = f07bs(trans, kl, ku, ab, ipiv, b, 'n', n, 'nrhs_p', nrhs_p)
[b, info] = nag_lapack_zgbtrs(trans, kl, ku, ab, ipiv, b, 'n', n, 'nrhs_p', nrhs_p)

Description

nag_lapack_zgbtrs (f07bs) is used to solve a complex band system of linear equations AX=B, ATX=B or AHX=B, the function must be preceded by a call to nag_lapack_zgbtrf (f07br) which computes the LU factorization of A as A=PLU. The solution is computed by forward and backward substitution.
If trans='N', the solution is computed by solving PLY=B and then UX=Y.
If trans='T', the solution is computed by solving UTY=B and then LTPTX=Y.
If trans='C', the solution is computed by solving UHY=B and then LHPTX=Y.

References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

Parameters

Compulsory Input Parameters

1:     trans – string (length ≥ 1)
Indicates the form of the equations.
trans='N'
AX=B is solved for X.
trans='T'
ATX=B is solved for X.
trans='C'
AHX=B is solved for X.
Constraint: trans='N', 'T' or 'C'.
2:     kl int64int32nag_int scalar
kl, the number of subdiagonals within the band of the matrix A.
Constraint: kl0.
3:     ku int64int32nag_int scalar
ku, the number of superdiagonals within the band of the matrix A.
Constraint: ku0.
4:     abldab: – complex array
The first dimension of the array ab must be at least 2×kl+ku+1.
The second dimension of the array ab must be at least max1,n.
The LU factorization of A, as returned by nag_lapack_zgbtrf (f07br).
5:     ipiv: int64int32nag_int array
The dimension of the array ipiv must be at least max1,n
The pivot indices, as returned by nag_lapack_zgbtrf (f07br).
6:     bldb: – complex array
The first dimension of the array b must be at least max1,n.
The second dimension of the array b must be at least max1,nrhs_p.
The n by r right-hand side matrix B.

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the second dimension of the array ab.
n, the order of the matrix A.
Constraint: n0.
2:     nrhs_p int64int32nag_int scalar
Default: the second dimension of the array b.
r, the number of right-hand sides.
Constraint: nrhs_p0.

Output Parameters

1:     bldb: – complex array
The first dimension of the array b will be max1,n.
The second dimension of the array b will be max1,nrhs_p.
The n by r solution matrix X.
2:     info int64int32nag_int scalar
info=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

   info<0
If info=-i, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of equations A+Ex=b, where
EckεLU ,  
ck is a modest linear function of k=kl+ku+1, and ε is the machine precision. This assumes kn.
If x^ is the true solution, then the computed solution x satisfies a forward error bound of the form
x-x^ x ckcondA,xε  
where condA,x=A-1Ax/xcondA=A-1AκA.
Note that condA,x can be much smaller than condA, and condAH (which is the same as condAT) can be much larger (or smaller) than condA.
Forward and backward error bounds can be computed by calling nag_lapack_zgbrfs (f07bv), and an estimate for κA can be obtained by calling nag_lapack_zgbcon (f07bu) with norm_p='I'.

Further Comments

The total number of real floating-point operations is approximately 8n2kl+kur, assuming nkl and nku.
This function may be followed by a call to nag_lapack_zgbrfs (f07bv) to refine the solution and return an error estimate.
The real analogue of this function is nag_lapack_dgbtrs (f07be).

Example

This example solves the system of equations AX=B, where
A= -1.65+2.26i -2.05-0.85i 0.97-2.84i 0.00+0.00i 0.00+6.30i -1.48-1.75i -3.99+4.01i 0.59-0.48i 0.00+0.00i -0.77+2.83i -1.06+1.94i 3.33-1.04i 0.00+0.00i 0.00+0.00i 4.48-1.09i -0.46-1.72i  
and
B= -1.06+21.50i 12.85+02.84i -22.72-53.90i -70.22+21.57i 28.24-38.60i -20.70-31.23i -34.56+16.73i 26.01+31.97i .  
Here A is nonsymmetric and is treated as a band matrix, which must first be factorized by nag_lapack_zgbtrf (f07br).
function f07bs_example


fprintf('f07bs example results\n\n');

m = int64(4);
kl = int64(1);
ku = int64(2);
ab = [ 0    + 0i,      0    +  0i,     0    + 0i,     0    + 0i;
       0    + 0i,      0    +  0i,     0.97 - 2.84i,  0.59 - 0.48i;
       0    + 0i,     -2.05 -  0.85i, -3.99 + 4.01i,  3.33 - 1.04i;
      -1.65 + 2.26i,  -1.48 -  1.75i, -1.06 + 1.94i, -0.46 - 1.72i;
       0    + 6.3i,   -0.77 +  2.83i,  4.48 - 1.09i,  0    + 0i];

b = [ -1.06 + 21.5i,  12.85 +  2.84i;
     -22.72 - 53.9i, -70.22 + 21.57i;
      28.24 - 38.6i, -20.73 -  1.23i;
     -34.56 + 16.73i, 26.01 + 31.97i];

% Factorize
[abf, ipiv, info] = f07br( ...
                           m, kl, ku, ab);

%Solve
trans = 'N';
[x, info] = f07bs( ...
                   trans, kl, ku, abf, ipiv, b);

disp('Solution(s)');
disp(x);


f07bs example results

Solution(s)
  -3.0000 + 2.0000i   1.0000 + 6.0000i
   1.0000 - 7.0000i  -7.0000 - 4.0000i
  -5.0000 + 4.0000i   3.0000 + 5.0000i
   6.0000 - 8.0000i  -8.0000 + 2.0000i


PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015