hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_lapack_zgecon (f07au)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_lapack_zgecon (f07au) estimates the condition number of a complex matrix A, where A has been factorized by nag_lapack_zgetrf (f07ar).

Syntax

[rcond, info] = f07au(norm_p, a, anorm, 'n', n)
[rcond, info] = nag_lapack_zgecon(norm_p, a, anorm, 'n', n)

Description

nag_lapack_zgecon (f07au) estimates the condition number of a complex matrix A, in either the 1-norm or the -norm:
κ1 A = A1 A-11   or   κ A = A A-1 .  
Note that κA=κ1AH.
Because the condition number is infinite if A is singular, the function actually returns an estimate of the reciprocal of the condition number.
The function should be preceded by a computation of A1 or A, and a call to nag_lapack_zgetrf (f07ar) to compute the LU factorization of A. The function then uses Higham's implementation of Hager's method (see Higham (1988)) to estimate A-11 or A-1.

References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation ACM Trans. Math. Software 14 381–396

Parameters

Compulsory Input Parameters

1:     norm_p – string (length ≥ 1)
Indicates whether κ1A or κA is estimated.
norm_p='1' or 'O'
κ1A is estimated.
norm_p='I'
κA is estimated.
Constraint: norm_p='1', 'O' or 'I'.
2:     alda: – complex array
The first dimension of the array a must be at least max1,n.
The second dimension of the array a must be at least max1,n.
The LU factorization of A, as returned by nag_lapack_zgetrf (f07ar).
3:     anorm – double scalar
If norm_p='1' or 'O', the 1-norm of the original matrix A.
If norm_p='I', the -norm of the original matrix A.
anorm must be computed either before calling nag_lapack_zgetrf (f07ar) or else from a copy of the original matrix A (see Example).
Constraint: anorm0.0.

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the first dimension of the array a and the second dimension of the array a.
n, the order of the matrix A.
Constraint: n0.

Output Parameters

1:     rcond – double scalar
An estimate of the reciprocal of the condition number of A. rcond is set to zero if exact singularity is detected or the estimate underflows. If rcond is less than machine precision, A is singular to working precision.
2:     info int64int32nag_int scalar
info=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

   info<0
If info=-i, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

Accuracy

The computed estimate rcond is never less than the true value ρ, and in practice is nearly always less than 10ρ, although examples can be constructed where rcond is much larger.

Further Comments

A call to nag_lapack_zgecon (f07au) involves solving a number of systems of linear equations of the form Ax=b or AHx=b; the number is usually 5 and never more than 11. Each solution involves approximately 8n2 real floating-point operations but takes considerably longer than a call to nag_lapack_zgetrs (f07as) with one right-hand side, because extra care is taken to avoid overflow when A is approximately singular.
The real analogue of this function is nag_lapack_dgecon (f07ag).

Example

This example estimates the condition number in the 1-norm of the matrix A, where
A= -1.34+2.55i 0.28+3.17i -6.39-2.20i 0.72-0.92i -0.17-1.41i 3.31-0.15i -0.15+1.34i 1.29+1.38i -3.29-2.39i -1.91+4.42i -0.14-1.35i 1.72+1.35i 2.41+0.39i -0.56+1.47i -0.83-0.69i -1.96+0.67i .  
Here A is nonsymmetric and must first be factorized by nag_lapack_zgetrf (f07ar). The true condition number in the 1-norm is 231.86.
function f07au_example


fprintf('f07au example results\n\n');

a = [-1.34 + 2.55i,  0.28 + 3.17i, -6.39 - 2.20i,  0.72 - 0.92i;
     -0.17 - 1.41i,  3.31 - 0.15i, -0.15 + 1.34i,  1.29 + 1.38i;
     -3.29 - 2.39i, -1.91 + 4.42i, -0.14 - 1.35i,  1.72 + 1.35i;
      2.41 + 0.39i, -0.56 + 1.47i, -0.83 - 0.69i, -1.96 + 0.67i];

norm_p = '1';
anorm = norm(a, 1);

% Factorise a
[LU, ipiv, info] = f07ar(a);

% Estimate condition number
[rcond, info] = f07au( ...
                       norm_p, LU, anorm);

if rcond > x02aj
  fprintf('\nEstimate of condition number = %10.2e\n', 1/rcond);
else
  fprintf('\nA is singular to working precision\n');
end


f07au example results


Estimate of condition number =   1.50e+02

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015