hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_det_complex_gen (f03bn)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_det_complex_gen (f03bn) computes the determinant of a complex n by n matrix A. nag_lapack_zgetrf (f07ar) must be called first to supply the matrix A in factorized form.

Syntax

[d, id, ifail] = f03bn(a, ipiv, 'n', n)
[d, id, ifail] = nag_det_complex_gen(a, ipiv, 'n', n)

Description

nag_det_complex_gen (f03bn) computes the determinant of a complex n by n matrix A that has been factorized by a call to nag_lapack_zgetrf (f07ar). The determinant of A is the product of the diagonal elements of U with the correct sign determined by the row interchanges.

References

Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra Springer–Verlag

Parameters

Compulsory Input Parameters

1:     alda: – complex array
The first dimension of the array a must be at least n.
The second dimension of the array a must be at least n.
The n by n matrix A in factorized form as returned by nag_lapack_zgetrf (f07ar).
2:     ipivn int64int32nag_int array
The row interchanges used to factorize matrix A as returned by nag_lapack_zgetrf (f07ar).

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the first dimension of the array a and the dimension of the array ipiv. (An error is raised if these dimensions are not equal.)
n, the order of the matrix A.
Constraint: n>0.

Output Parameters

1:     d – complex scalar
The mantissa of the real and imaginary parts of the determinant.
2:     id2 int64int32nag_int array
The exponents for the real and imaginary parts of the determinant. The determinant, d=dr,di, is returned as dr=Dr×2j and di=Di×2k, where d=Dr,Di and j and k are stored in the first and second elements respectively of the array id on successful exit.
3:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:
   ifail=1
Constraint: n1.
   ifail=3
Constraint: ldan.
   ifail=4
The matrix A is approximately singular.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

The accuracy of the determinant depends on the conditioning of the original matrix. For a detailed error analysis, see page 107 of Wilkinson and Reinsch (1971).

Further Comments

The time taken by nag_det_complex_gen (f03bn) is approximately proportional to n.

Example

This example calculates the determinant of the complex matrix
1 1+2i 2+10i 1+i 3i -5+14i 1+i 5i -8+20i .  
function f03bn_example


fprintf('f03bn example results\n\n');

a = [1,   1+2i, 2+10i;
     1+i, 3i,  -5+14i;
     1+i, 5i,  -8+20i];
% LU factorisation of a
[a, ipiv, info] = f07ar(a);

fprintf('\n');
[ifail] = x04da('g', 'n', a, 'Array a after factorization');

fprintf('\nPivots:\n');
fprintf(' %d', ipiv);
fprintf('\n\n');

[d, id, ifail] = f03bn(a, ipiv);

fprintf('\nd = %13.5f id = (%d, %d)\n', d, id);
fprintf('Value of determinant = (%13.5e, %13.5e)\n', ...
        real(d)*2^id(1),imag(d)*2^id(2));


f03bn example results


 Array a after factorization
             1          2          3
 1      1.0000     0.0000    -5.0000
        1.0000     3.0000    14.0000

 2      1.0000     0.0000    -3.0000
        0.0000     2.0000     6.0000

 3      0.5000     0.2500    -0.2500
       -0.5000     0.2500    -0.2500

Pivots:
 2 3 3


d =       0.06250 id = (4, 0)
Value of determinant = (  1.00000e+00,   0.00000e+00)

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015