hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_eigen_complex_gen_eigsys (f02gc)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_eigen_complex_gen_eigsys (f02gc) computes selected eigenvalues and eigenvectors of a complex general matrix.

Syntax

[a, m, w, v, ifail] = f02gc(crit, a, wl, wu, mest, 'n', n)
[a, m, w, v, ifail] = nag_eigen_complex_gen_eigsys(crit, a, wl, wu, mest, 'n', n)

Description

nag_eigen_complex_gen_eigsys (f02gc) computes selected eigenvalues and the corresponding right eigenvectors of a complex general matrix A:
Axi=λixi.  
Eigenvalues λi may be selected either by modulus, satisfying
wlλiwu,  
or by real part, satisfying
wlReλiwu.  

References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

Parameters

Compulsory Input Parameters

1:     crit – string (length ≥ 1)
Indicates the criterion for selecting eigenvalues.
crit='M'
Eigenvalues are selected according to their moduli: wlλiwu.
crit='R'
Eigenvalues are selected according to their real parts: wlReλiwu.
Constraint: crit='M' or 'R'.
2:     alda: – complex array
The first dimension of the array a must be at least max1,n.
The second dimension of the array a must be at least max1,n.
The n by n general matrix A.
3:     wl – double scalar
4:     wu – double scalar
wl and wu, the lower and upper bounds on the criterion for the selected eigenvalues (see crit).
Constraint: wu>wl.
5:     mest int64int32nag_int scalar
The second dimension of the array v. mest must be an upper bound on m, the number of eigenvalues and eigenvectors selected. No eigenvectors are computed if mest<m.
Constraint: mestmax1,m.

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the first dimension of the array a and the second dimension of the array a.
n, the order of the matrix A.
Constraint: n0.

Output Parameters

1:     alda: – complex array
The first dimension of the array a will be max1,n.
The second dimension of the array a will be max1,n.
Contains the Hessenberg form of the balanced input matrix A (see Further Comments).
2:     m int64int32nag_int scalar
m, the number of eigenvalues actually selected.
3:     wn – complex array
The first m elements of w hold the selected eigenvalues; elements m+1 to n contain the other eigenvalues.
4:     vldvmest – complex array
Contains the selected eigenvectors, with the ith column holding the eigenvector associated with the eigenvalue λi (stored in wi).
5:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:

Cases prefixed with W are classified as warnings and do not generate an error of type NAG:error_n. See nag_issue_warnings.

   ifail=1
On entry,crit'M' or 'R',
orn<0,
orlda<max1,n,
orwuwl,
ormest<1,
orldv<max1,n,
orlwork<max1,n×n+2.
   ifail=2
The QR algorithm failed to compute all the eigenvalues. No eigenvectors have been computed.
   ifail=3
There are more than mest eigenvalues in the specified range. The actual number of eigenvalues in the range is returned in m. No eigenvectors have been computed. Rerun with the second dimension of v=mestm.
W  ifail=4
Inverse iteration failed to compute all the specified eigenvectors. If an eigenvector failed to converge, the corresponding column of v is set to zero.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

If λi is an exact eigenvalue, and λ~i is the corresponding computed value, then
λ~i - λi cnεA2si,  
where cn is a modestly increasing function of n, ε is the machine precision, and si is the reciprocal condition number of λi; A is the balanced form of the original matrix A (see Further Comments), and AA.
If xi is the corresponding exact eigenvector, and x~i is the corresponding computed eigenvector, then the angle θx~i,xi between them is bounded as follows:
θx~i,xicnεA2sepi  
where sepi is the reciprocal condition number of xi.
The condition numbers si and sepi may be computed from the Hessenberg form of the balanced matrix A which is returned in the array a. This requires calling nag_lapack_zhseqr (f08ps) with job='S' to compute the Schur form of A, followed by nag_lapack_ztrsna (f08qy).

Further Comments

nag_eigen_complex_gen_eigsys (f02gc) calls functions from LAPACK in Chapter F08. It first balances the matrix, using a diagonal similarity transformation to reduce its norm; and then reduces the balanced matrix A to upper Hessenberg form H, using a unitary similarity transformation: A=QHQH. The function uses the Hessenberg QR algorithm to compute all the eigenvalues of H, which are the same as the eigenvalues of A. It computes the eigenvectors of H which correspond to the selected eigenvalues, using inverse iteration. It premultiplies the eigenvectors by Q to form the eigenvectors of A; and finally transforms the eigenvectors to those of the original matrix A.
Each eigenvector x is normalized so that x2=1, and the element of largest absolute value is real.
The inverse iteration function may make a small perturbation to the real parts of close eigenvalues, and this may shift their moduli just outside the specified bounds. If you are relying on eigenvalues being within the bounds, you should test them on return from nag_eigen_complex_gen_eigsys (f02gc).
The time taken by the function is approximately proportional to n3.
The function can be used to compute all eigenvalues and eigenvectors, by setting wl large and negative, and wu large and positive.

Example

This example computes those eigenvalues of the matrix A which lie in the range -5.5,+5.5 , and their corresponding eigenvectors, where
A = -3.97-5.04i -4.11+3.70i -0.34+1.01i 1.29-0.86i 0.34-1.50i 1.52-0.43i 1.88-5.38i 3.36+0.65i 3.31-3.85i 2.50+3.45i 0.88-1.08i 0.64-1.48i -1.10+0.82i 1.81-1.59i 3.25+1.33i 1.57-3.44i .  
function f02gc_example


fprintf('f02gc example results\n\n');

a = [ -3.97 - 5.04i, -4.11 + 3.70i, -0.34 + 1.01i,  1.29 - 0.86i;
       0.34 - 1.50i,  1.52 - 0.43i,  1.88 - 5.38i,  3.36 + 0.65i;
       3.31 - 3.85i,  2.50 + 3.45i,  0.88 - 1.08i,  0.64 - 1.48i;
      -1.10 + 0.82i,  1.81 - 1.59i,  3.25 + 1.33i,  1.57 - 3.44i];

% Find eigenvalues of A such that |eig| <= 5.5
crit = 'Moduli';
wl = 0.0;
wu = 5.5;
mest = int64(3);

[a, m, w, v, ifail] = f02gc( ...
                             crit, a, wl, wu, mest);

evals = w(1:m)';
disp('Eigenvalues');
disp(evals);

evecs = v(:,1:m);
disp('Eigenvectors');
disp(evecs);


f02gc example results

Eigenvalues
  -5.0000 - 2.0060i   3.0023 + 3.9998i

Eigenvectors
  -0.3865 + 0.1732i  -0.0356 - 0.1782i
  -0.3539 + 0.4529i   0.1264 + 0.2666i
   0.6124 + 0.0000i   0.0129 - 0.2966i
  -0.0859 - 0.3284i   0.8898 + 0.0000i


PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015