hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_matop_real_gen_matrix_frcht_exp (f01jh)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_matop_real_gen_matrix_frcht_exp (f01jh) computes the Fréchet derivative LA,E of the matrix exponential of a real n by n matrix A applied to the real n by n matrix E. The matrix exponential eA is also returned.

Syntax

[a, e, ifail] = f01jh(a, e, 'n', n)
[a, e, ifail] = nag_matop_real_gen_matrix_frcht_exp(a, e, 'n', n)

Description

The Fréchet derivative of the matrix exponential of A is the unique linear mapping ELA,E such that for any matrix E 
eA+E - e A - LA,E = oE .  
The derivative describes the first-order effect of perturbations in A on the exponential eA.
nag_matop_real_gen_matrix_frcht_exp (f01jh) uses the algorithms of Al–Mohy and Higham (2009a) and Al–Mohy and Higham (2009b) to compute eA and LA,E. The matrix exponential eA is computed using a Padé approximant and the scaling and squaring method. The Padé approximant is then differentiated in order to obtain the Fréchet derivative LA,E.

References

Al–Mohy A H and Higham N J (2009a) A new scaling and squaring algorithm for the matrix exponential SIAM J. Matrix Anal. 31(3) 970–989
Al–Mohy A H and Higham N J (2009b) Computing the Fréchet derivative of the matrix exponential, with an application to condition number estimation SIAM J. Matrix Anal. Appl. 30(4) 1639–1657
Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA
Moler C B and Van Loan C F (2003) Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later SIAM Rev. 45 3–49

Parameters

Compulsory Input Parameters

1:     alda: – double array
The first dimension of the array a must be at least n.
The second dimension of the array a must be at least n.
The n by n matrix A.
2:     elde: – double array
The first dimension of the array e must be at least n.
The second dimension of the array e must be at least n.
The n by n matrix E

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the first dimension of the arrays a, e. (An error is raised if these dimensions are not equal.)
n, the order of the matrix A.
Constraint: n0.

Output Parameters

1:     alda: – double array
The first dimension of the array a will be n.
The second dimension of the array a will be n.
The n by n matrix exponential eA.
2:     elde: – double array
The first dimension of the array e will be n.
The second dimension of the array e will be n.
The Fréchet derivative LA,E
3:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:
   ifail=1
The linear equations to be solved for the Padé approximant are singular; it is likely that this function has been called incorrectly.
   ifail=2
eA has been computed using an IEEE double precision Padé approximant, although the arithmetic precision is higher than IEEE double precision.
   ifail=3
An unexpected internal error has occurred. Please contact NAG.
   ifail=-1
Constraint: n0.
   ifail=-3
Constraint: ldan.
   ifail=-5
Constraint: lden.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

For a normal matrix A (for which ATA=AAT) the computed matrix, eA, is guaranteed to be close to the exact matrix, that is, the method is forward stable. No such guarantee can be given for non-normal matrices. See Section 10.3 of Higham (2008), Al–Mohy and Higham (2009a) and Al–Mohy and Higham (2009b) for details and further discussion.

Further Comments

The cost of the algorithm is On3 and the real allocatable memory required is approximately 9n2; see Al–Mohy and Higham (2009a) and Al–Mohy and Higham (2009b).
If the matrix exponential alone is required, without the Fréchet derivative, then nag_matop_real_gen_matrix_exp (f01ec) should be used.
If the condition number of the matrix exponential is required then nag_matop_real_gen_matrix_cond_exp (f01jg) should be used.
As well as the excellent book Higham (2008), the classic reference for the computation of the matrix exponential is Moler and Van Loan (2003).

Example

This example finds the matrix exponential eA and the Fréchet derivative LA,E, where
A = 1 2 2 2 3 1 1 2 3 2 1 2 3 3 3 1   and   E = 1 0 1 2 0 0 0 1 4 2 1 2 0 3 2 1 .  
function f01jh_example


fprintf('f01jh example results\n\n');

% Exponential of matrix A and Frechet derivative of exp(A)E.

a = [ 1 2 2 2;
      3 1 1 2;
      3 2 1 2;
      3 3 3 1];

e = [ 1 0 1 2;
      0 0 0 1;
      4 2 1 2;
      0 3 2 1];

[expa, lae, ifail] = f01jh(a,e);

[ifail] = x04ca('General', ' ', expa, 'exp(A):');
disp(' ');
[ifail] = x04ca('General', ' ', lae, 'L_exp(A,E):');


f01jh example results

 exp(A):
             1          2          3          4
 1    740.7038   610.8500   542.2743   549.1753
 2    731.2510   603.5524   535.0884   542.2743
 3    823.7630   679.4257   603.5524   610.8500
 4    998.4355   823.7630   731.2510   740.7038
 
 L_exp(A,E):
             1          2          3          4
 1   3571.5724  2989.2581  2652.3449  2818.7416
 2   3202.0590  2684.2631  2381.4500  2542.7976
 3   4341.3950  3628.9329  3219.3516  3408.1831
 4   4821.2945  4035.9700  3580.0124  3804.4690

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015