hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_matop_complex_gen_matrix_actexp (f01ha)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_matop_complex_gen_matrix_actexp (f01ha) computes the action of the matrix exponential etA, on the matrix B, where A is a complex n by n matrix, B is a complex n by m matrix and t is a complex scalar.

Syntax

[a, b, ifail] = f01ha(m, a, b, t, 'n', n)
[a, b, ifail] = nag_matop_complex_gen_matrix_actexp(m, a, b, t, 'n', n)
Note: the interface to this routine has changed since earlier releases of the toolbox:
At Mark 25: m was made optional

Description

etAB is computed using the algorithm described in Al–Mohy and Higham (2011) which uses a truncated Taylor series to compute the product etAB without explicitly forming etA.

References

Al–Mohy A H and Higham N J (2011) Computing the action of the matrix exponential, with an application to exponential integrators SIAM J. Sci. Statist. Comput. 33(2) 488-511
Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

Parameters

Compulsory Input Parameters

1:     m int64int32nag_int scalar
m, the number of columns of the matrix B.
Constraint: m0.
2:     alda: – complex array
The first dimension of the array a must be at least n.
The second dimension of the array a must be at least n.
The n by n matrix A.
3:     bldb: – complex array
The first dimension of the array b must be at least n.
The second dimension of the array b must be at least m.
The n by m matrix B.
4:     t – complex scalar
The scalar t.

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the first dimension of the arrays a, b. (An error is raised if these dimensions are not equal.)
n, the order of the matrix A.
Constraint: n0.

Output Parameters

1:     alda: – complex array
The first dimension of the array a will be n.
The second dimension of the array a will be n.
A is overwritten during the computation.
2:     bldb: – complex array
The first dimension of the array b will be n.
The second dimension of the array b will be m.
The n by m matrix etAB.
3:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:

Cases prefixed with W are classified as warnings and do not generate an error of type NAG:error_n. See nag_issue_warnings.

W  ifail=2
etAB has been computed using an IEEE double precision Taylor series, although the arithmetic precision is higher than IEEE double precision.
   ifail=-1
Constraint: n0.
   ifail=-2
Constraint: m0.
   ifail=-4
Constraint: ldan.
   ifail=-6
Constraint: ldbn.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

For a Hermitian matrix A (for which AH=A) the computed matrix etAB is guaranteed to be close to the exact matrix, that is, the method is forward stable. No such guarantee can be given for non-Hermitian matrices. See Section 4 of Al–Mohy and Higham (2011) for details and further discussion.

Further Comments

The matrix etAB could be computed by explicitly forming etA using nag_matop_complex_gen_matrix_exp (f01fc) and multiplying B by the result. However, experiments show that it is usually both more accurate and quicker to use nag_matop_complex_gen_matrix_actexp (f01ha).
The cost of the algorithm is On2m. The precise cost depends on A since a combination of balancing, shifting and scaling is used prior to the Taylor series evaluation.
Approximately n2+ 2m+8 n  of complex allocatable memory is required by nag_matop_complex_gen_matrix_actexp (f01ha).
nag_matop_real_gen_matrix_actexp (f01ga) can be used to compute etAB for real A, B, and t. nag_matop_complex_gen_matrix_actexp_rcomm (f01hb) provides an implementation of the algorithm with a reverse communication interface, which returns control to the user when matrix multiplications are required. This should be used if A is large and sparse.

Example

This example computes etAB, where
A = 0.5+0.0i -0.2+0.0i 1.0+0.1i 0.0+0.4i 0.3+0.0i 0.5+1.2i 3.1+0.0i 1.0+0.2i 0.0+2.0i 0.1+0.0i 1.2+0.2i 0.5+0.0i 1.0+0.3i 0.0+0.2i 0.0+0.9i 0.5+0.0i ,  
B = 0.4+0.0i 1.2+0.0i 1.3+0.0i -0.2+0.1i 0.0+0.3i 2.1+0.0i 0.4+0.0i -0.9+0.0i  
and
t=-0.5+0.0i .  
function f01ha_example


fprintf('f01ha example results\n\n');

a = [0.5+0.0i, -0.2+0.0i, 1.0+0.1i, 0.0+0.4i;
     0.3+0.0i,  0.5+1.2i, 3.1+0.0i, 1.0+0.2i;
     0.0+2.0i,  0.1+0.0i, 1.2+0.2i, 0.5+0.0i;
     1.0+0.3i,  0.0+0.2i, 0.0+0.9i, 0.5+0.0i];
b = [0.4+0.0i,  1.2+0.0i;
     1.3+0.0i, -0.2+0.1i;
     0.0+0.3i,  2.1+0.0i;
     0.4+0.0i, -0.9+0.0i];

t = complex(-0.5);

% Compute exp(ta)b

[a, exptab, ifail] = f01ha(a, b, t);

disp('exp(tA)B');
disp(exptab);


f01ha example results

exp(tA)B
   0.4251 - 0.1061i  -0.0220 + 0.3289i
   0.7229 - 0.5940i  -1.7931 + 1.4952i
  -0.1394 - 0.1151i   1.4781 - 0.4514i
   0.1054 - 0.0786i  -1.0059 - 0.7079i


PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015