hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_fit_opt_get (e02zl)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_fit_opt_get (e02zl) is used to query the value of optional parameters available to supported problem solving functions in Chapter E02. Currently, only nag_fit_2dspline_ts_sctr (e02jd) is supported.

Syntax

[ivalue, rvalue, cvalue, optype, ifail] = e02zl(optstr, iopts, opts)
[ivalue, rvalue, cvalue, optype, ifail] = nag_fit_opt_get(optstr, iopts, opts)

Description

nag_fit_opt_get (e02zl) is used to query the current values of options. It is necessary to initalize optional parameter arrays using nag_fit_opt_set (e02zk) before any options are queried.
nag_fit_opt_get (e02zl) will normally return either an integer, real or character value dependent upon the type associated with the optional parameter being queried. Whether the option queried is of integer, real or character type is indicated by the returned value of optype.
Information on optional parameter names and whether these options are real, integer or character can be found in Optional Parameters in nag_fit_2dspline_ts_sctr (e02jd).

References

None.

Parameters

Compulsory Input Parameters

1:     optstr – string
A string identifying the option whose current value is required. See Optional Parameters in nag_fit_2dspline_ts_sctr (e02jd) for information on valid options. In addition, the following is a valid option:
Identify
nag_fit_opt_get (e02zl) returns in cvalue the function name supplied to nag_fit_opt_set (e02zk) when the optional parameter arrays iopts and opts were initialized.
2:     iopts: int64int32nag_int array
Note: the dimension of this array is dictated by the requirements of associated functions that must have been previously called. This array must be the same array passed as argument iopts in the previous call to nag_fit_opt_set (e02zk).
3:     opts: – double array
Note: the dimension of this array is dictated by the requirements of associated functions that must have been previously called. This array must be the same array passed as argument opts in the previous call to nag_fit_opt_set (e02zk).

Optional Input Parameters

None.

Output Parameters

1:     ivalue int64int32nag_int scalar
If the optional parameter supplied in optstr is an integer valued argument, ivalue will hold its current value.
2:     rvalue – double scalar
If the optional parameter supplied in optstr is a real valued argument, rvalue will hold its current value.
3:     cvalue – string
Note: the maximum length of the string returned in cvalue depends on the problem solving routine in use. See Section 11.1 of the relevant solver.
If the optional parameter supplied in optstr is a character valued argument, cvalue will hold its current value, unless Identify is specified (see optstr).
4:     optype int64int32nag_int scalar
Indicates whether the optional parameter supplied in optstr is an integer, real or character valued argument and hence which of ivalue, rvalue or cvalue holds the current value.
optype=1
optstr is an integer valued optional parameter, its current value has been returned in ivalue.
optype=2
optstr is a real valued optional parameter, its current value has been returned in rvalue.
optype=3
optstr is a character valued optional parameter, its current value has been returned in cvalue.
5:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:
   ifail=11
On entry, the optional parameter in optstr was not recognized.
   ifail=41
On entry, optstr indicates a character optional parameter, but cvalue is too short to hold the stored value. The returned value will be truncated.
   ifail=61
On entry, either the option arrays have not been initialized or they have been corrupted.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

Not applicable.

Further Comments

None.

Example

See the example programs associated with the problem solving function you wish to use for a demonstration of how to use nag_fit_opt_get (e02zl) to query options.
function e02zl_example


fprintf('e02zl example results\n\n');

npts  = 15;
xdata = [ 0.0;  0.5;   1;     1.5;  2;    2.5;  3;    4; ...
          4.5;  5;     5.5;   6;    7;    7.5;  8];
ydata = [-1.1; -0.372; 0.431; 1.69; 2.11; 3.1;  4.23; 4.35; ...
          4.81; 4.61;  4.79;  5.23; 6.35; 7.19; 7.97];
wdata = [1; 1; 1.5; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1];
cstart = 'c';
sfac  = 0.001;
x     = [6.5178; 7.2463; 1.0159; 7.3070; 5.0589; 0.7803; 2.2280; 4.3751; ...
         7.6601; 7.7191; 1.2609; 7.7647; 7.6573; 3.8830; 6.4022; 1.1351; ...
         3.3741; 7.3259; 6.3377; 7.6759];
nest  = int64(npts + 4);
ixloc = zeros(numel(x), 1, 'int64');
wrk   = zeros(4*npts + 16*nest + 41, 1);
iwrk1 = zeros(nest, 1, 'int64');
iwrk2 = zeros(3+3*numel(x), 1, 'int64');
lamda = zeros(nest, 1);
xord  = int64(0);
start = int64(0);
deriv = int64(3);


% Generate the data to fit.
[x, y, f, lsminp, lsmaxp, nxcels, nycels] = generate_data();

% Initialize the options arrays and set/get some options.
[iopts, opts] = handle_options();

% Compute the spline coefficients.
[coefs, iopts, opts, ifail] = ...
    e02jd(x, y, f, lsminp, lsmaxp, nxcels, nycels, iopts, opts);


% pmin and pmax form the bounding box of the spline. We must not attempt to
% evaluate the spline outside this box.
pmin = [min(x); min(y)];
pmax = [max(x); max(y)];

% Evaluate the approximation at a vector of values.
evaluate_at_vector(coefs, iopts, opts, pmin, pmax);

% Evaluate the approximation on a mesh.
evaluate_on_mesh(coefs, iopts, opts, pmin, pmax);



function [x, y, f, lsminp, lsmaxp, nxcels, nycels] = generate_data()
  % Generates random vectors x, y. 
  % These are used by bivariate function of R. Franke to create data set.
  % The remaining input data are set to suitable values for this problem,
  % as discussed by Davydov and Zeilfelder.

  n = int64(100);

  % Initialize the generator to a repeatable sequence
  [state, ifail] = g05kf(int64(1), int64(0), int64(32958));

  % Generate x and y values
  [state, x, ifail] = g05sa(n, state);
  [state, y, ifail] = g05sa(n, state);

  % Ensure that the bounding box stretches all the way to (0,0) and (1,1)
  x(1) = 0;
  y(1) = 0;
  x(n) = 1;
  y(n) = 1;

  f = 0.75*exp(-((9*x(:)-2).^2     + (9*y(:)-2).^2)/4) + ...
      0.75*exp(-((9*x(:)+ 1).^2/49 + (9*y(:)+1)/10))   + ...
      0.50*exp(-((9*x(:)-7).^2     + (9*y(:)-3).^2)/4) - ...
      0.20*exp(-((9*x(:)- 4).^2    + (9*y(:)-7).^2));

  % Grid size for the approximation
  nxcels = int64(6);
  nycels = int64(6);

  % Identify the computation.
  fprintf(['\nComputing the coefficients of a C^1 spline',...
           ' approximation to Franke''s function\n']);
  fprintf(' Using a %d by %d grid\n', nxcels, nycels);

  % Local-approximation control parameters.
  lsminp = int64(3);
  lsmaxp = int64(100);

function [iopts, opts] = handle_options()
  % Initialize the options arrays and demonstrate how to set and get
  % optional parameters.
  opts  = zeros(100, 1);
  iopts = zeros(100, 1, 'int64');

  [iopts, opts, ifail] = e02zk( ...
                                'Initialize = e02jd', iopts, opts);

  %  Set some non-default parameters for the local approximation method.
  optstr = strcat('Minimum Singular Value LPA = ', num2str(1/32));
  [iopts, opts, ifail] = e02zk( ...
                                optstr, iopts, opts);
  [iopts, opts, ifail] = e02zk( ...
                                'Polynomial Starting Degree = 3', iopts, opts);

  % Set a non-default parameter for the global approximation method.
  [iopts, opts, ifail] = e02zk( ...
                                'Averaged Spline = Yes', iopts, opts);

  % As an example of how to get the value of an optional parameter,
  % display whether averaging of local approximations is in operation.
  [~, ~, cvalue, ~, ifail] = e02zl( ...
                                    'Averaged Spline', iopts, opts);
  if strcmp(cvalue, 'YES')
    fprintf(' Using an averaged local approximation\n');
  end

function evaluate_at_vector(coefs, iopts, opts, pmin, pmax)
  % Evaluates the approximation at a (in this case trivial) vector of values.

  xevalv = [0];
  yevalv = [0];

  % Force the points to be within the bounding box of the spline
  for i = 1:numel(xevalv)
    xevalv(i) = max(xevalv(i),pmin(1));
    xevalv(i) = min(xevalv(i),pmax(1));
    yevalv(i) = max(yevalv(i),pmin(2));
    yevalv(i) = min(yevalv(i),pmax(2));
  end

  [fevalv, ifail] = e02je(xevalv, yevalv, coefs, iopts, opts);


  fprintf('\n Values of computed spline at (x_i,y_i):\n\n');
  fprintf('         x_i          y_i     f(x_i,y_i)\n');
  for i = 1:numel(xevalv)
    fprintf('%12.2f %12.2f %12.2f\n', xevalv(i),yevalv(i),fevalv(i));
  end

function evaluate_on_mesh(coefs,iopts,opts,pmin,pmax)
  % Evaluates the approximation on a mesh of n_x * n_y values.
  nxeval = 101;
  nyeval = 101;

  % Define the mesh by its lower-left and upper-right corners.
  ll_corner = [0; 0];
  ur_corner = [1; 1];

  % Set the mesh spacing and the evaluation points.
  % Force the points to be within the bounding box of the spline.
  h = [(ur_corner(1)-ll_corner(1))/(nxeval-1); ...
       (ur_corner(2)-ll_corner(2))/(nyeval-1)];

  xevalm = ll_corner(1) + [0:nxeval-1]*h(1);
  yevalm = ll_corner(2) + [0:nyeval-1]*h(2);

  % Ensure that the evaluation points are in the bounding box
  xevalm = max(pmin(1), xevalm);
  xevalm = min(pmax(1), xevalm);
  yevalm = max(pmin(2), yevalm);
  yevalm = min(pmax(2), yevalm);

  % Evaluate
  [fevalm, ifail] = e02jf(xevalm, yevalm, coefs, iopts, opts);


  print_mesh = false;

  if print_mesh
    fprintf('\nValues of computed spline at (x_i,y_j):\n\n');
    fprintf('         x_i          y_i     f(x_i,y_i)\n');
    for i = 1:nxeval
      for j=1:nyeval
        fprintf('%12.2f %12.2f %12.2f\n', xevalm(i),yevalm(j),fevalm(i, j));
      end
    end
  else
    fprintf('\nOutputting of the function values on the mesh is disabled\n');
  end

  fig1 = figure;
  meshc(yevalm,xevalm,fevalm);
  title({'Bivariate spline fit from scattered data', ...
         'using two-stage approximation'});
  xlabel('x');
  ylabel('y');
  view(22,28);
e02zl example results


Computing the coefficients of a C^1 spline approximation to Franke's function
 Using a 6 by 6 grid
 Using an averaged local approximation

 Values of computed spline at (x_i,y_i):

         x_i          y_i     f(x_i,y_i)
        0.00         0.00         0.76

Outputting of the function values on the mesh is disabled
e02zl_fig1.png

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015