hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_inteq_abel_weak_weights (d05by)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_inteq_abel_weak_weights (d05by) computes the fractional quadrature weights associated with the Backward Differentiation Formulae (BDF) of orders 4, 5 and 6. These weights can then be used in the solution of weakly singular equations of Abel type.

Syntax

[wt, sw, ifail] = d05by(iorder, iq, lenfw)
[wt, sw, ifail] = nag_inteq_abel_weak_weights(iorder, iq, lenfw)

Description

nag_inteq_abel_weak_weights (d05by) computes the weights Wi,j and ωi for a family of quadrature rules related to a BDF method for approximating the integral:
1π0tϕs t-s dshj=0 2p-2Wi,jϕj×h+hj=2p-1iωi-jϕj×h,  0tT, (1)
with t=i×hi0, for some given h. In (1), p is the order of the BDF method used and Wi,j, ωi are the fractional starting and the fractional convolution weights respectively. The algorithm for the generation of ωi is based on Newton's iteration. Fast Fourier transform (FFT) techniques are used for computing these weights and subsequently Wi,j (see Baker and Derakhshan (1987) and Henrici (1979) for practical details and Lubich (1986) for theoretical details). Some special functions can be represented as the fractional integrals of simpler functions and fractional quadratures can be employed for their computation (see Lubich (1986)). A description of how these weights can be used in the solution of weakly singular equations of Abel type is given in Further Comments.

References

Baker C T H and Derakhshan M S (1987) Computational approximations to some power series Approximation Theory (eds L Collatz, G Meinardus and G Nürnberger) 81 11–20
Henrici P (1979) Fast Fourier methods in computational complex analysis SIAM Rev. 21 481–529
Lubich Ch (1986) Discretized fractional calculus SIAM J. Math. Anal. 17 704–719

Parameters

Compulsory Input Parameters

1:     iorder int64int32nag_int scalar
p, the order of the BDF method to be used.
Constraint: 4iorder6.
2:     iq int64int32nag_int scalar
Determines the number of weights to be computed. By setting iq to a value, 2iq+1 fractional convolution weights are computed.
Constraint: iq0.
3:     lenfw int64int32nag_int scalar
The dimension of the array wt.
Constraint: lenfw2iq+2.

Optional Input Parameters

None.

Output Parameters

1:     wtlenfw – double array
The first 2iq+1 elements of wt contains the fractional convolution weights ωi, for i=0,1,,2iq+1-1. The remainder of the array is used as workspace.
2:     swldsw2×iorder-1 – double array
swij+1 contains the fractional starting weights Wi-1,j , for i=1,2,,n and j=0,1,,2×iorder-2, where n=2iq+1+2×iorder-1.
3:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:
   ifail=1
On entry,iorder<4 or iorder>6,
oriq<0,
orlenfw<2iq+2,
orldsw<2iq+1+2×iorder-1,
orlwk<2iq+3.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

Not applicable.

Further Comments

Fractional quadrature weights can be used for solving weakly singular integral equations of Abel type. In this section, we propose the following algorithm which you may find useful in solving a linear weakly singular integral equation of the form
yt=ft+1π0tKt,sys t-s ds,  0tT, (2)
using nag_inteq_abel_weak_weights (d05by). In (2), Kt,s and ft are given and the solution yt is sought on a uniform mesh of size h such that T=n×h. Discretization of (2) yields
yi = fi×h + h j=0 2p-2 W i,j K i×h,j×h yj + h j=2p-1 i ωi-j K i×h,j×h yj , (3)
where yiyi×h, for i=1,2,,n. We propose the following algorithm for computing yi from (3) after a call to nag_inteq_abel_weak_weights (d05by):
(a) Set n=2iq+1+2×iorder-2 and h=T/n.
(b) Equation (3) requires 2×iorder-2 starting values, yj, for j=1,2,,2×iorder-2, with y0=f0. These starting values can be computed by solving the system
yi = fi×h + h j=0 2×iorder-2 swi+1j+1 K i×h,j×h yj ,  i=1,2,,2×iorder-2 .  
(c) Compute the inhomogeneous terms
σi = fi×h + h j=0 2×iorder- 2 swi+1j+1 K i×h,j×h yj ,   i = 2 × iorder-1 , 2×iorder , , n .  
(d) Start the iteration for i=2×iorder-1,2×iorder,,n to compute yi from:
1 - h wt1 K i×h,i×h yi = σi + h j=2×iorder-1 i-1 wti-j+1 K i×h,j×h yj .  
Note that for nonlinear weakly singular equations, the solution of a nonlinear algebraic system is required at step (b) and a single nonlinear equation at step (d).

Example

The following example generates the first 16 fractional convolution and 23 fractional starting weights generated by the fourth-order BDF method.
function d05by_example


fprintf('d05by example results\n\n');

iorder = int64(4);
iq = int64(3);
lenfw = int64(32);
[wt, sw, ifail] = d05by( ...
			 iorder, iq, lenfw);

fprintf('\nFractional convolution weights\n\n');
itiq = double(2^(iq+1));
n = [0:itiq-1]';
w(1:itiq) = wt(1:itiq,1);
fprintf('%3d    %10.4f\n',[n w']');

fprintf('\nFractional starting weights W\n\n');
ldsw = double(itiq+2*iorder-1);
n = [0:ldsw-1]';
fprintf('%5d%9.4f%9.4f%9.4f%9.4f%9.4f%9.4f%9.4f\n',[n sw]');


d05by example results


Fractional convolution weights

  0        0.6928
  1        0.6651
  2        0.4589
  3        0.3175
  4        0.2622
  5        0.2451
  6        0.2323
  7        0.2164
  8        0.2006
  9        0.1878
 10        0.1780
 11        0.1700
 12        0.1629
 13        0.1566
 14        0.1508
 15        0.1457

Fractional starting weights W

    0   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
    1   0.0565   2.8928  -6.7497  11.6491 -11.1355   5.5374  -1.1223
    2   0.0371   1.7401  -2.8628   6.5207  -6.4058   3.2249  -0.6583
    3   0.0300   1.3207  -2.4642   6.3612  -5.4478   2.7025  -0.5481
    4   0.0258   1.1217  -2.2620   5.3683  -3.7553   2.2132  -0.4549
    5   0.0230   0.9862  -2.0034   4.5005  -3.2772   2.7262  -0.4320
    6   0.0208   0.9001  -1.8989   4.2847  -3.5881   2.8201   0.2253
    7   0.0190   0.8506  -1.9250   4.4164  -4.0181   2.7932   0.1564
    8   0.0173   0.8177  -1.9697   4.5348  -4.2425   2.7458  -0.0697
    9   0.0160   0.7886  -1.9781   4.5318  -4.2769   2.6997  -0.2127
   10   0.0149   0.7603  -1.9548   4.4545  -4.2332   2.6541  -0.2620
   11   0.0140   0.7338  -1.9198   4.3619  -4.1782   2.6059  -0.2716
   12   0.0132   0.7097  -1.8842   4.2754  -4.1246   2.5544  -0.2767
   13   0.0125   0.6880  -1.8497   4.1933  -4.0662   2.5011  -0.2845
   14   0.0119   0.6681  -1.8153   4.1109  -4.0004   2.4479  -0.2915
   15   0.0114   0.6497  -1.7805   4.0279  -3.9304   2.3962  -0.2951
   16   0.0110   0.6327  -1.7461   3.9463  -3.8598   2.3466  -0.2958
   17   0.0105   0.6168  -1.7126   3.8677  -3.7907   2.2990  -0.2950
   18   0.0102   0.6020  -1.6804   3.7926  -3.7238   2.2536  -0.2935
   19   0.0098   0.5882  -1.6495   3.7209  -3.6589   2.2101  -0.2917
   20   0.0095   0.5752  -1.6199   3.6523  -3.5961   2.1686  -0.2895
   21   0.0093   0.5631  -1.5916   3.5867  -3.5356   2.1291  -0.2871
   22   0.0090   0.5517  -1.5644   3.5240  -3.4774   2.0914  -0.2844

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015