PDF version (NAG web site
, 64-bit version, 64-bit version)
NAG Toolbox: nag_roots_sys_func_easy (c05qb)
Purpose
nag_roots_sys_func_easy (c05qb) is an easy-to-use function that finds a solution of a system of nonlinear equations by a modification of the Powell hybrid method.
Syntax
[
x,
fvec,
user,
ifail] = c05qb(
fcn,
x, 'n',
n, 'xtol',
xtol, 'user',
user)
[
x,
fvec,
user,
ifail] = nag_roots_sys_func_easy(
fcn,
x, 'n',
n, 'xtol',
xtol, 'user',
user)
Description
The system of equations is defined as:
nag_roots_sys_func_easy (c05qb) is based on the MINPACK routine HYBRD1 (see
Moré et al. (1980)). It chooses the correction at each step as a convex combination of the Newton and scaled gradient directions. The Jacobian is updated by the rank-1 method of Broyden. At the starting point, the Jacobian is approximated by forward differences, but these are not used again until the rank-1 method fails to produce satisfactory progress. For more details see
Powell (1970).
References
Moré J J, Garbow B S and Hillstrom K E (1980) User guide for MINPACK-1 Technical Report ANL-80-74 Argonne National Laboratory
Powell M J D (1970) A hybrid method for nonlinear algebraic equations Numerical Methods for Nonlinear Algebraic Equations (ed P Rabinowitz) Gordon and Breach
Parameters
Compulsory Input Parameters
- 1:
– function handle or string containing name of m-file
-
fcn must return the values of the functions
at a point
.
[fvec, user, iflag] = fcn(n, x, user, iflag)
Input Parameters
- 1:
– int64int32nag_int scalar
-
, the number of equations.
- 2:
– double array
-
The components of the point at which the functions must be evaluated.
- 3:
– Any MATLAB object
fcn is called from
nag_roots_sys_func_easy (c05qb) with the object supplied to
nag_roots_sys_func_easy (c05qb).
- 4:
– int64int32nag_int scalar
-
.
Output Parameters
- 1:
– double array
-
The function values .
- 2:
– Any MATLAB object
- 3:
– int64int32nag_int scalar
-
In general,
iflag should not be reset by
fcn. If, however, you wish to terminate execution (perhaps because some illegal point
x has been reached), then
iflag should be set to a negative integer.
- 2:
– double array
-
An initial guess at the solution vector.
Optional Input Parameters
- 1:
– int64int32nag_int scalar
-
Default:
the dimension of the array
x.
, the number of equations.
Constraint:
.
- 2:
– double scalar
Suggested value:
, where
is the
machine precision returned by
nag_machine_precision (x02aj).
Default:
The accuracy in
x to which the solution is required.
Constraint:
.
- 3:
– Any MATLAB object
user is not used by
nag_roots_sys_func_easy (c05qb), but is passed to
fcn. Note that for large objects it may be more efficient to use a global variable which is accessible from the m-files than to use
user.
Output Parameters
- 1:
– double array
-
The final estimate of the solution vector.
- 2:
– double array
-
The function values at the final point returned in
x.
- 3:
– Any MATLAB object
- 4:
– int64int32nag_int scalar
unless the function detects an error (see
Error Indicators and Warnings).
Error Indicators and Warnings
Errors or warnings detected by the function:
Cases prefixed with W are classified as warnings and
do not generate an error of type NAG:error_n. See nag_issue_warnings.
- W
-
There have been at least
calls to
fcn. Consider restarting the calculation from the point held in
x.
- W
-
No further improvement in the solution is possible.
- W
-
The iteration is not making good progress. This failure exit may indicate that the system does not have a zero, or that the solution is very close to the origin (see
Accuracy). Otherwise, rerunning
nag_roots_sys_func_easy (c05qb) from a different starting point may avoid the region of difficulty.
- W
-
iflag was set negative in
fcn.
-
-
Constraint: .
-
-
Constraint: .
-
An unexpected error has been triggered by this routine. Please
contact
NAG.
-
Your licence key may have expired or may not have been installed correctly.
-
Dynamic memory allocation failed.
Accuracy
If
is the true solution,
nag_roots_sys_func_easy (c05qb) tries to ensure that
If this condition is satisfied with
, then the larger components of
have
significant decimal digits. There is a danger that the smaller components of
may have large relative errors, but the fast rate of convergence of
nag_roots_sys_func_easy (c05qb) usually obviates this possibility.
If
xtol is less than
machine precision and the above test is satisfied with the
machine precision in place of
xtol, then the function exits with
.
Note: this convergence test is based purely on relative error, and may not indicate convergence if the solution is very close to the origin.
The convergence test assumes that the functions are reasonably well behaved. If this condition is not satisfied, then
nag_roots_sys_func_easy (c05qb) may incorrectly indicate convergence. The validity of the answer can be checked, for example, by rerunning
nag_roots_sys_func_easy (c05qb) with a lower value for
xtol.
Further Comments
Local workspace arrays of fixed lengths are allocated internally by nag_roots_sys_func_easy (c05qb). The total size of these arrays amounts to double elements.
The time required by nag_roots_sys_func_easy (c05qb) to solve a given problem depends on , the behaviour of the functions, the accuracy requested and the starting point. The number of arithmetic operations executed by nag_roots_sys_func_easy (c05qb) to process each evaluation of the functions is approximately . The timing of nag_roots_sys_func_easy (c05qb) is strongly influenced by the time spent evaluating the functions.
Ideally the problem should be scaled so that, at the solution, the function values are of comparable magnitude.
Example
This example determines the values
which satisfy the tridiagonal equations:
Open in the MATLAB editor:
c05qb_example
function c05qb_example
fprintf('c05qb example results\n\n');
x = -ones(9, 1);
[xOut, fvec, user, ifail] = c05qb(@fcn, x);
switch ifail
case {0}
fprintf('\nFinal 2-norm of the residuals = %12.4e\n', norm(fvec));
fprintf('\nFinal approximate solution\n');
disp(xOut);
case {2, 3, 4}
fprintf('\nApproximate solution\n');
disp(xOut);
end
function [fvec, user, iflag] = fcn(n, x, user, iflag)
fvec = zeros(n, 1);
fvec(1:n) = (3.0-2.0.*x).*x + 1.0;
fvec(2:n) = fvec(2:n) - x(1:(n-1));
fvec(1:(n-1)) = fvec(1:(n-1)) - 2.0.*x(2:n);
c05qb example results
Final 2-norm of the residuals = 1.1926e-08
Final approximate solution
-0.5707
-0.6816
-0.7017
-0.7042
-0.7014
-0.6919
-0.6658
-0.5960
-0.4164
PDF version (NAG web site
, 64-bit version, 64-bit version)
© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015