E01 – Interpolation

NAG Toolbox

nag_interp_5d_scat_shep (e01tm)

1 Purpose

nag_interp_5d_scat_shep (e01tm) generates a five-dimensional interpolant to a set of scattered data points, using a modified Shepard method.

2 Syntax

```
[iq, rq, ifail] = nag_interp_5d_scat_shep(x, f, nw, nq, 'm', m)
[iq, rq, ifail] = e01tm(x, f, nw, nq, 'm', m)
```

3 Description

nag_interp_5d_scat_shep (e01tm) constructs a smooth function $Q(\mathbf{x})$, $\mathbf{x} \in \mathbb{R}^5$ which interpolates a set of m scattered data points (\mathbf{x}_r, f_r) , for $r = 1, 2, \dots, m$, using a modification of Shepard's method. The surface is continuous and has continuous first partial derivatives.

The basic Shepard method, which is a generalization of the two-dimensional method described in Shepard (1968), interpolates the input data with the weighted mean

$$Q(\mathbf{x}) = \frac{\sum_{r=1}^{m} w_r(\mathbf{x}) q_r}{\sum_{r=1}^{m} w_r(\mathbf{x})},$$

where
$$q_r = f_r$$
, $w_r(\mathbf{x}) = \frac{1}{d_r^2}$ and $d_r^2 = \|\mathbf{x} - \mathbf{x}_r\|_2^2$.

The basic method is global in that the interpolated value at any point depends on all the data, but nag_interp_5d_scat_shep (e01tm) uses a modification (see Franke and Nielson (1980) and Renka (1988a)), whereby the method becomes local by adjusting each $w_r(\mathbf{x})$ to be zero outside a hypersphere with centre \mathbf{x}_r and some radius R_w . Also, to improve the performance of the basic method, each q_r above is replaced by a function $q_r(\mathbf{x})$, which is a quadratic fitted by weighted least squares to data local to \mathbf{x}_r and forced to interpolate (\mathbf{x}_r, f_r) . In this context, a point \mathbf{x} is defined to be local to another point if it lies within some distance R_q of it.

The efficiency of nag_interp_5d_scat_shep (e01tm) is enhanced by using a cell method for nearest neighbour searching due to Bentley and Friedman (1979) with a cell density of 3.

The radii R_w and R_q are chosen to be just large enough to include N_w and N_q data points, respectively, for user-supplied constants N_w and N_q . Default values of these arguments are provided, and advice on alternatives is given in Section 9.2.

nag_interp_5d_scat_shep (e01tm) is derived from the new implementation of QSHEP3 described by Renka (1988b). It uses the modification for five-dimensional interpolation described by Berry and Minser (1999).

Values of the interpolant $Q(\mathbf{x})$ generated by nag_interp_5d_scat_shep (e01tm), and its first partial derivatives, can subsequently be evaluated for points in the domain of the data by a call to nag interp 5d scat shep eval (e01tn).

Mark 25 e01tm.1

4 References

Bentley J L and Friedman J H (1979) Data structures for range searching ACM Comput. Surv. 11 397-409

Berry M W, Minser K S (1999) Algorithm 798: high-dimensional interpolation using the modified Shepard method *ACM Trans. Math. Software* **25** 353–366

Franke R and Nielson G (1980) Smooth interpolation of large sets of scattered data *Internat. J. Num. Methods Engrg.* **15** 1691–1704

Renka R J (1988a) Multivariate interpolation of large sets of scattered data ACM Trans. Math. Software 14 139-148

Renka R J (1988b) Algorithm 661: QSHEP3D: Quadratic Shepard method for trivariate interpolation of scattered data *ACM Trans. Math. Software* **14** 151–152

Shepard D (1968) A two-dimensional interpolation function for irregularly spaced data *Proc. 23rd Nat. Conf. ACM* 517–523 Brandon/Systems Press Inc., Princeton

5 Parameters

5.1 Compulsory Input Parameters

1: $\mathbf{x}(\mathbf{5}, \mathbf{m}) - \text{REAL (KIND=nag_wp)}$ array

 $\mathbf{x}(1:5,r)$ must be set to the Cartesian coordinates of the data point \mathbf{x}_r , for $r=1,2,\ldots,m$.

Constraint: these coordinates must be distinct, and must not all lie on the same four-dimensional hypersurface.

2: $f(m) - REAL (KIND=nag_wp) array$

 $\mathbf{f}(r)$ must be set to the data value f_r , for $r = 1, 2, \dots, m$.

3: **nw** – INTEGER

The number N_w of data points that determines each radius of influence R_w , appearing in the definition of each of the weights w_r , for $r=1,2,\ldots,m$ (see Section 3). Note that R_w is different for each weight. If $\mathbf{nw} \leq 0$ the default value $\mathbf{nw} = \min(32, \mathbf{m} - 1)$ is used instead.

Constraint: $\mathbf{nw} \leq \min(50, \mathbf{m} - 1)$.

4: **nq** – INTEGER

The number N_q of data points to be used in the least squares fit for coefficients defining the quadratic functions $q_r(\mathbf{x})$ (see Section 3). If $\mathbf{nq} \leq 0$ the default value $\mathbf{nq} = \min(50, \mathbf{m} - 1)$ is used instead.

Constraint: $\mathbf{nq} \leq 0$ or $20 \leq \mathbf{nq} \leq \min(70, \mathbf{m} - 1)$.

5.2 Optional Input Parameters

1: $\mathbf{m} - INTEGER$

Default: the dimension of the array \mathbf{f} and the second dimension of the array \mathbf{x} . (An error is raised if these dimensions are not equal.)

m, the number of data points.

Note: on the basis of experimental results reported in Berry and Minser (1999), it is recommended to use $\mathbf{m} \ge 4000$.

Constraint: $\mathbf{m} \geq 23$.

e01tm.2 Mark 25

E01 – Interpolation

5.3 Output Parameters

```
1: iq(2 \times m + 1) – INTEGER array
```

Integer data defining the interpolant $Q(\mathbf{x})$.

2: $rq(21 \times m + 11) - REAL (KIND=nag_wp) array$

Real data defining the interpolant $Q(\mathbf{x})$.

3: **ifail** – INTEGER

ifail = 0 unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail = 1

Constraint: $\mathbf{m} \geq 23$.

Constraint: $\mathbf{nq} \leq 0$ or $\mathbf{nq} \geq 20$.

Constraint: $\mathbf{nq} \leq \min(70, \mathbf{m} - 1)$.

Constraint: $\mathbf{nw} \leq \min(50, \mathbf{m} - 1)$.

ifail = 2

There are duplicate nodes in the dataset.

ifail = 3

On entry, all the data points lie on the same four-dimensional hypersurface. No unique solution exists.

ifail
$$= -99$$

An unexpected error has been triggered by this routine. Please contact NAG.

ifail
$$= -399$$

Your licence key may have expired or may not have been installed correctly.

ifail
$$= -999$$

Dynamic memory allocation failed.

7 Accuracy

On successful exit, the function generated interpolates the input data exactly and has quadratic precision. Overall accuracy of the interpolant is affected by the choice of arguments **nw** and **nq** as well as the smoothness of the function represented by the input data. Berry and Minser (1999) report on the results obtained for a set of test functions.

8 Further Comments

8.1 Timing

The time taken for a call to nag_interp_5d_scat_shep (e01tm) will depend in general on the distribution of the data points and on the choice of N_w and N_q parameters. If the data points are uniformly randomly distributed, then the time taken should be O(m). At worst $O(m^2)$ time will be required.

Mark 25 e01tm.3

8.2 Choice of N_w and N_q

Default values of the arguments N_w and N_q may be selected by calling nag_interp_5d_scat_shep (e01tm) with $\mathbf{nw} \leq 0$ and $\mathbf{nq} \leq 0$. These default values may well be satisfactory for many applications.

If non-default values are required they must be supplied to nag_interp_5d_scat_shep (e01tm) through positive values of \mathbf{nw} and \mathbf{nq} . Increasing these argument values makes the method less local. This may increase the accuracy of the resulting interpolant at the expense of increased computational cost. The default values $\mathbf{nw} = \min(32, \mathbf{m} - 1)$ and $\mathbf{nq} = \min(50, \mathbf{m} - 1)$ have been chosen on the basis of experimental results reported in Berry and Minser (1999). In these experiments the error norm was found to increase with the decrease of N_q , but to be little affected by the choice of N_w . The choice of both, directly affected the time taken by the function. For further advice on the choice of these arguments see Berry and Minser (1999).

9 Example

This program reads in a set of 30 data points and calls nag_interp_5d_scat_shep (e01tm) to construct an interpolating function $Q(\mathbf{x})$. It then calls nag_interp_5d_scat_shep_eval (e01tn) to evaluate the interpolant at a set of points.

Note that this example is not typical of a realistic problem: the number of data points would normally be larger.

See also Section 10 in nag interp 5d scat shep eval (e01tn).

9.1 Program Text

```
function e01tm_example
fprintf('e01tm example results\n\n');
x = [0.81, 0.91, 0.13, 0.91, 0.63, 0.10, 0.28, 0.55, 0.96, 0.96, 0.16, ...
       0.97, 0.96, 0.49, 0.80, 0.14, 0.42, 0.92, 0.79, 0.96, 0.66, 0.04, ...
      0.85, 0.93, 0.68, 0.76, 0.74, 0.39, 0.66, 0.17;
0.15, 0.96, 0.88, 0.49, 0.41, 0.13, 0.93, 0.01, 0.19, 0.32, 0.05, ...
0.14, 0.73, 0.48, 0.34, 0.24, 0.45, 0.19, 0.32, 0.26, 0.83, 0.70, ...
       0.33, 0.58, 0.29, 0.26, 0.26, 0.68, 0.52, 0.08;
       0.44, 0.00, 0.22, 0.39, 0.72, 0.77, 0.24, 0.04, 0.95, 0.53, 0.16, ...
      0.36, 0.28, 0.58, 0.64, 0.12, 0.03, 0.48, 0.15, 0.93, 0.41, 0.40, ... 0.15, 0.88, 0.88, 0.09, 0.33, 0.69, 0.17, 0.35;
      0.83,\ 0.09,\ 0.21,\ 0.79,\ 0.68,\ 0.47,\ 0.90,\ 0.41,\ 0.66,\ 0.96,\ 0.30,\ \dots
       0.72, 0.75, 0.19, 0.57, 0.06, 0.68, 0.67, 0.13, 0.89, 0.17, 0.54, ...
      0.03, 0.81, 0.60, 0.41, 0.64, 0.37, 1.00, 0.71;

0.21, 0.98, 0.73, 0.47, 0.65, 0.22, 0.96, 0.26, 0.99, 0.84, 0.58, ...

0.78, 0.28, 0.25, 0.08, 0.63, 0.66, 0.28, 0.40, 0.61, 0.09, 0.37, ...
       0.36, 0.40, 0.47, 0.14, 0.36, 0.12, 0.43, 0.17];
f = [6.39;
     2.50;
     9.34;
     7.52;
     6.91;
     4.68;
    45.40;
     5.48;
     2.75;
     7.43;
     6.05;
     5.77;
     8.68;
     2.38;
     3.70;
     1.34;
    15.18;
     4.35;
     1.50;
     3.43;
```

e01tm.4 Mark 25

E01 – Interpolation

```
3.10;
  14.33;
   0.35;
   4.30;
   3.77;
   4.16;
   6.75;
   5.22;
  16.23;
  10.62];
xe = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6;
0.1, 0.2, 0.3, 0.4, 0.5, 0.6;
0.1, 0.2, 0.3, 0.4, 0.5, 0.6;
     0.1, 0.2, 0.3, 0.4, 0.5, 0.6;
     0.1, 0.2, 0.3, 0.4, 0.5, 0.6];
% Generate the interpolant
nq = nag_int(0);
nw = nag_int(0);
[iq, rq, ifail] = e01tm(x, f, nw, nq);
% Evaluate the interpolant
[q, qx, ifail] = e01tn(x, f, iq, rq, xe);
fprintf(' i | xe(i,1)  xe(i,2)  xe(i,3)  xe(i,4)  xe(i,5)  | q(i)\n');
fprintf('---|-----\n');
for i=1:6
 fprintf(' %d | %8.4f %8.4f %8.4f %8.4f %8.4f \n', i, xe(:, i), q(i));
end
```

9.2 Program Results

e01tm example results

	Interpolated Evaluation Points						Values
i	_ _	xe(i,1)	xe(i,2)	xe(i,3)	xe(i,4)	xe(i,5)	q(i)
1 2 3 4 5	- 	0.1000 0.2000 0.3000 0.4000 0.5000	0.1000 0.2000 0.3000 0.4000 0.5000	0.1000 0.2000 0.3000 0.4000 0.5000	0.1000 0.2000 0.3000 0.4000 0.5000	0.1000 0.2000 0.3000 0.4000 0.5000 0.6000	3.2313 4.2476 5.2695 6.3838 7.6837 9.3885

Mark 25 e01tm.5 (last)