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NAG Toolbox

nag_interp S5d_scat shep (e01tm)

1 Purpose

nag_interp 5d_scat shep (eOltm) generates a five-dimensional interpolant to a set of scattered data
points, using a modified Shepard method.

2 Syntax
[ig, rqg, ifail] = nag_interp_b5d_scat_shep(x, £, nw, nqg, 'm’, m)
[ig, rqg, ifail] = eOltm(x, £, nw, ng, 'm’, m)

3 Description

nag_interp_5d_scat shep (e0ltm) constructs a smooth function Q(x), x € R’ which interpolates a set of
m scattered data points (x,, f;), for r =1,2,...,m, using a modification of Shepard's method. The
surface is continuous and has continuous first partial derivatives.

The basic Shepard method, which is a generalization of the two-dimensional method described in
Shepard (1968), interpolates the input data with the weighted mean

where ¢, = f;, w,(x) :% and 2 = ||x — x,||5.
;

The basic method is global in that the interpolated value at any point depends on all the data, but
nag_interp_5d scat shep (eOltm) uses a modification (see Franke and Nielson (1980) and Renka
(1988a)), whereby the method becomes local by adjusting each w;,(x) to be zero outside a hypersphere
with centre x, and some radius R,. Also, to improve the performance of the basic method, each g,
above is replaced by a function ¢.(x), which is a quadratic fitted by weighted least squares to data local
to x, and forced to interpolate (x,, f,.). In this context, a point x is defined to be local to another point if
it lies within some distance R, of it.

The efficiency of nag interp 5d scat shep (eOltm) is enhanced by using a cell method for nearest
neighbour searching due to Bentley and Friedman (1979) with a cell density of 3.

The radii R,, and R, are chosen to be just large enough to include NN, and N, data points, respectively,
for user-supplied constants N,, and N,. Default values of these arguments are provided, and advice on
alternatives is given in Section 9.2.

nag_interp 5d_scat shep (e0ltm) is derived from the new implementation of QSHEP3 described by
Renka (1988b). It uses the modification for five-dimensional interpolation described by Berry and
Minser (1999).

Values of the interpolant Q(x) generated by nag_interp 5d scat shep (eOltm), and its first partial
derivatives, can subsequently be evaluated for points in the domain of the data by a call to
nag_interp 5d_scat shep eval (eOltn).
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5  Parameters

5.1 Compulsory Input Parameters

1: x(5,m) — REAL (KIND=nag_wp) array
x(1 :5,7) must be set to the Cartesian coordinates of the data point x,, for r =1,2,...,m.
Constraint: these coordinates must be distinct, and must not all lie on the same four-dimensional
hypersurface.

2: f(m) — REAL (KIND=nag_wp) array

f(r) must be set to the data value f,, for r=1,2,...,m.

3: nw — INTEGER

The number N, of data points that determines each radius of influence R,, appearing in the
definition of each of the weights w,, for r = 1,2,...,m (see Section 3). Note that R, is different
for each weight. If nw < 0 the default value nw = min(32, m — 1) is used instead.

Constraint: nw < min(50,m — 1).

4: nq — INTEGER

The number NN, of data points to be used in the least squares fit for coefficients defining the
quadratic functions ¢,(x) (see Section 3). If nq < 0 the default value nq = min(50,m — 1) is
used instead.

Constraint: nq < 0 or 20 < nq < min(70,m — 1).

5.2 Optional Input Parameters
1: m — INTEGER

Default: the dimension of the array f and the second dimension of the array x. (An error is raised
if these dimensions are not equal.)

m, the number of data points.

Note: on the basis of experimental results reported in Berry and Minser (1999), it is
recommended to use m > 4000.

Constraint: m > 23.
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5.3 Output Parameters
1: iq(2 xm+ 1) — INTEGER array
Integer data defining the interpolant Q(x).

2: rq(21 x m + 11) — REAL (KIND=nag_wp) array
Real data defining the interpolant Q(x).

3: ifail — INTEGER

ifail = 0 unless the function detects an error (see Section 5).

6  Error Indicators and Warnings
Errors or warnings detected by the function:
ifail =1
Constraint: m > 23.
Constraint: nq < 0 or nq > 20.
Constraint: nq < min(70, m — 1).
Constraint: nw < min(50,m — 1).
ifail = 2

There are duplicate nodes in the dataset.

ifail = 3
On entry, all the data points lie on the same four-dimensional hypersurface. No unique solution
exists.

ifail = —99

An unexpected error has been triggered by this routine. Please contact NAG.

ifail = —399

Your licence key may have expired or may not have been installed correctly.

ifail = —999

Dynamic memory allocation failed.

7  Accuracy

On successful exit, the function generated interpolates the input data exactly and has quadratic
precision. Overall accuracy of the interpolant is affected by the choice of arguments nw and nq as well
as the smoothness of the function represented by the input data. Berry and Minser (1999) report on the
results obtained for a set of test functions.

8 Further Comments
8.1 Timing

The time taken for a call to nag_interp_S5d scat_shep (e01tm) will depend in general on the distribution
of the data points and on the choice of N, and N, parameters. If the data points are uniformly

randomly distributed, then the time taken should be O(m). At worst O(mz) time will be required.
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8.2 Choice of NV,, and N,

Default values of the arguments N,, and N, may be selected by calling nag_interp_5d_scat_shep
(e01tm) with nw < 0 and nq < 0. These default values may well be satisfactory for many applications.

If non-default values are required they must be supplied to nag_interp 5d scat _shep (e01tm) through
positive values of nw and nq. Increasing these argument values makes the method less local. This may
increase the accuracy of the resulting interpolant at the expense of increased computational cost. The
default values nw = min(32,m — 1) and nq = min(50,m — 1) have been chosen on the basis of
experimental results reported in Berry and Minser (1999). In these experiments the error norm was
found to increase with the decrease of IV, but to be little affected by the choice of N,,. The choice of
both, directly affected the time taken by the function. For further advice on the choice of these
arguments see Berry and Minser (1999).

9 Example

This program reads in a set of 30 data points and calls nag_interp_5d_scat_shep (eOltm) to construct an
interpolating function Q(x). It then calls nag_interp 5d_scat shep eval (eOltn) to evaluate the
interpolant at a set of points.

Note that this example is not typical of a realistic problem: the number of data points would normally
be larger.

See also Section 10 in nag_interp 5d_scat shep eval (eOltn).

9.1 Program Text

function eOltm_example
fprintf(’e0ltm example results\n\n’);
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% Generate the interpolant
ng = nag_int (0);
nw = nag_int (0);
[ig, rqg, ifail] = eO0ltm(x, f, nw, nqg);

% Evaluate the interpolant
[q, gx, ifail] = eOltn(x, £, iq, rqg, xe);

e0ltm

fprintf (’'\n | Interpolated Evaluation Points |  Values\n');
fprintf('-—-|-- - """ to——————- \n’);
fprintf(’ 1 | =xe(i,1) xe(i,2) xe(1i,3) xe(1i,4) xe(1i,5) | g(i)\n’);
fprintf('--—- |- Fomm————= \n’);
for i=1:6

fprintf(’ %d |%8.4f %8.4f %8.4f %8.4f %8.4f %8.4f \n’, i, xe(:, 1), q(i));

end

9.2 Program Results

e0ltm example results

| Interpolated Evaluation Points |  Values
-—— | ___________________________________________________ + ________
i | xe(i,1) xe(i,2) xe(1i,3) xe(i,4) xe(i,5) | g(i)
-——— | ___________________________________________________ + ________
1] 0.1000 0.1000 0.1000 0.1000 0.1000 3.2313
2 0.2000 0.2000 0.2000 0.2000 0.2000 4.2476
3 0.3000 0.3000 0.3000 0.3000 0.3000 5.2695
4 | 0.4000 0.4000 0.4000 0.4000 0.4000 6.3838
5 ] 0.5000 0.5000 0.5000 0.5000 0.5000 7.6837
6 | 0.6000 0.6000 0.6000 0.6000 0.6000 9.3885
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