
NAG Toolbox

nag_interp_1d_ratnl (e01ra)

1 Purpose

nag_interp_1d_ratnl (e01ra) produces, from a set of function values and corresponding abscissae, the
coefficients of an interpolating rational function expressed in continued fraction form.

2 Syntax

[mm, aa, uu, iiffaaiill] = nag_interp_1d_ratnl(xx, ff, ’n’, nn)

[mm, aa, uu, iiffaaiill] = e01ra(xx, ff, ’n’, nn)

3 Description

nag_interp_1d_ratnl (e01ra) produces the parameters of a rational function R xð Þ which assumes
prescribed values fi at prescribed values xi of the independent variable x, for i ¼ 1; 2; . . . ; n. More
specifically, nag_interp_1d_ratnl (e01ra) determines the parameters aj, for j ¼ 1; 2; . . . ;m and uj, for
j ¼ 1; 2; . . . ;m� 1, in the continued fraction

R xð Þ ¼ a1 þRm xð Þ ð1Þ
where

Ri xð Þ ¼ am�iþ2 x� um�iþ1ð Þ
1þRi�1 xð Þ ; for i ¼ m;m� 1; . . . ; 2;

and

R1 xð Þ ¼ 0;

such that R xið Þ ¼ fi, for i ¼ 1; 2; . . . ; n. The value of m in (1) is determined by the function; normally
m ¼ n. The values of uj form a reordered subset of the values of xi and their ordering is designed to
ensure that a representation of the form (1) is determined whenever one exists.

The subsequent evaluation of (1) for given values of x can be carried out using nag_interp_1d_ratnl_
eval (e01rb).

The computational method employed in nag_interp_1d_ratnl (e01ra) is the modification of the Thacher–
Tukey algorithm described in Graves–Morris and Hopkins (1981).

4 References

Graves–Morris P R and Hopkins T R (1981) Reliable rational interpolation Numer. Math. 36 111–128

5 Parameters

5.1 Compulsory Input Parameters

1: xðnÞ – REAL (KIND=nag_wp) array

xðiÞ must be set to the value of the ith data abscissa, xi, for i ¼ 1; 2; . . . ; n.

Constraint: the xðiÞ must be distinct.

2: fðnÞ – REAL (KIND=nag_wp) array

fðiÞ must be set to the value of the data ordinate, fi, corresponding to xi, for i ¼ 1; 2; . . . ; n.
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5.2 Optional Input Parameters

1: n – INTEGER

Default: the dimension of the arrays x, f. (An error is raised if these dimensions are not equal.)

n, the number of data points.

Constraint: n > 0.

5.3 Output Parameters

1: m – INTEGER

m, the number of terms in the continued fraction representation of R xð Þ.

2: aðnÞ – REAL (KIND=nag_wp) array

aðjÞ contains the value of the parameter aj in R xð Þ, for j ¼ 1; 2; . . . ;m. The remaining elements
of a, if any, are set to zero.

3: uðnÞ – REAL (KIND=nag_wp) array

uðjÞ contains the value of the parameter uj in R xð Þ, for j ¼ 1; 2; . . . ;m� 1. The uj are a
permuted subset of the elements of x. The remaining n�mþ 1 locations contain a permutation
of the remaining xi, which can be ignored.

4: ifail – INTEGER

ifail ¼ 0 unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail ¼ 1

On entry, n � 0.

ifail ¼ 2

At least one pair of the values xðiÞ are equal (or so nearly so that a subsequent division will
inevitably cause overflow).

ifail ¼ 3

A continued fraction of the required form does not exist.

ifail ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

ifail ¼ �399

Your licence key may have expired or may not have been installed correctly.

ifail ¼ �999

Dynamic memory allocation failed.

7 Accuracy

Usually, it is not the accuracy of the coefficients produced by this function which is of prime interest,
but rather the accuracy of the value of R xð Þ that is produced by the associated function
nag_interp_1d_ratnl_eval (e01rb) when subsequently it evaluates the continued fraction (1) for a
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given value of x. This final accuracy will depend mainly on the nature of the interpolation being
performed. If interpolation of a ‘well-behaved smooth’ function is attempted (and provided the data
adequately represents the function), high accuracy will normally ensue, but, if the function is not so
‘smooth’ or extrapolation is being attempted, high accuracy is much less likely. Indeed, in extreme
cases, results can be highly inaccurate.

There is no built-in test of accuracy but several courses are open to you to prevent the production or the
acceptance of inaccurate results.

1. If the origin of a variable is well outside the range of its data values, the origin should be shifted to
correct this; and, if the new data values are still excessively large or small, scaling to make the
largest value of the order of unity is recommended. Thus, normalization to the range �1:0 to þ1:0
is ideal. This applies particularly to the independent variable; for the dependent variable, the
removal of leading figures which are common to all the data values will usually suffice.

2. To check the effect of rounding errors engendered in the functions themselves, nag_interp_1d_ratnl
(e01ra) should be re-entered with x1 interchanged with xi and f1 with fi, i 6¼ 1ð Þ. This will produce
a completely different vector a and a reordered vector u, but any change in the value of R xð Þ
subsequently produced by nag_interp_1d_ratnl_eval (e01rb) will be due solely to rounding error.

3. Even if the data consist of calculated values of a formal mathematical function, it is only in
exceptional circumstances that bounds for the interpolation error (the difference between the true
value of the function underlying the data and the value which would be produced by the two
functions if exact arithmetic were used) can be derived that are sufficiently precise to be of
practical use. Consequently, you are recommended to rely on comparison checks: if extra data
points are available, the calculation may be repeated with one or more data pairs added or
exchanged, or alternatively, one of the original data pairs may be omitted. If the algorithms are
being used for extrapolation, the calculations should be performed repeatedly with the 2; 3; . . .
nearest points until, hopefully, successive values of R xð Þ for the given x agree to the required
accuracy.

8 Further Comments

The time taken by nag_interp_1d_ratnl (e01ra) is approximately proportional to n2.

The continued fraction (1) when expanded produces a rational function in x, the degree of whose
numerator is either equal to or exceeds by unity that of the denominator. Only if this rather special form
of interpolatory rational function is needed explicitly, would this function be used without subsequent
entry (or entries) to nag_interp_1d_ratnl_eval (e01rb).

9 Example

This example reads in the abscissae and ordinates of 5 data points and prints the arguments aj and uj of
a rational function which interpolates them.

9.1 Program Text

function e01ra_example

fprintf(’e01ra example results\n\n’);

x = [0:4];
f = [4 2 4 7 10.4];

[m, a, u, ifail] = e01ra( ...
x, f);

disp(’Reorder subset, u:’);
disp(u(1:m-1)’);
fprintf(’\n’);
disp(’Thiele coefficients, a:’);
disp(a(1:m)’);
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9.2 Program Results

e01ra example results

Reorder subset, u:
0 3 1

Thiele coefficients, a:
4.0000 1.0000 0.7500 -1.0000
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