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nag_interp_2d_spline_grid (e01da)

1 Purpose

nag_interp_2d_spline_grid (e01da) computes a bicubic spline interpolating surface through a set of data
values, given on a rectangular grid in the x-y plane.

2 Syntax

[ppxx, ppyy, llaammddaa, mmuu, cc, iiffaaiill] = nag_interp_2d_spline_grid(xx, yy, ff, ’mx’, mmxx,
’my’, mmyy)

[ppxx, ppyy, llaammddaa, mmuu, cc, iiffaaiill] = e01da(xx, yy, ff, ’mx’, mmxx, ’my’, mmyy)

3 Description

nag_interp_2d_spline_grid (e01da) determines a bicubic spline interpolant to the set of data points
xq; yr ; fq;r
� �

, for q ¼ 1; 2; . . . ;mx and r ¼ 1; 2; . . . ;my. The spline is given in the B-spline
representation

s x; yð Þ ¼
Xmx

i¼1

Xmy

j¼1

cijMi xð ÞNj yð Þ;

such that

s xq; yr
� � ¼ fq;r;

where Mi xð Þ and Nj yð Þ denote normalized cubic B-splines, the former defined on the knots �i to �iþ4

and the latter on the knots �j to �jþ4, and the cij are the spline coefficients. These knots, as well as the
coefficients, are determined by the function, which is derived from the function B2IRE in Anthony et
al. (1982). The method used is described in Section 9.2.

For further information on splines, see Hayes and Halliday (1974) for bicubic splines and de Boor
(1972) for normalized B-splines.

Values and derivatives of the computed spline can subsequently be computed by calling
nag_fit_2dspline_evalv (e02de), nag_fit_2dspline_evalm (e02df) or nag_fit_2dspline_derivm (e02dh)
as described in Section 9.3.

4 References

Anthony G T, Cox M G and Hayes J G (1982) DASL – Data Approximation Subroutine Library
National Physical Laboratory

Cox M G (1975) An algorithm for spline interpolation J. Inst. Math. Appl. 15 95–108

de Boor C (1972) On calculating with B-splines J. Approx. Theory 6 50–62

Hayes J G and Halliday J (1974) The least squares fitting of cubic spline surfaces to general data sets J.
Inst. Math. Appl. 14 89–103
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5 Parameters

5.1 Compulsory Input Parameters

1: xðmxÞ – REAL (KIND=nag_wp) array
2: yðmyÞ – REAL (KIND=nag_wp) array

xðqÞ and yðrÞ must contain xq , for q ¼ 1; 2; . . . ;mx, and yr , for r ¼ 1; 2; . . . ;my, respectively.

Constraints:

xðqÞ < xðq þ 1Þ, for q ¼ 1; 2; . . . ;mx � 1;
yðrÞ < yðr þ 1Þ, for r ¼ 1; 2; . . . ;my � 1.

3: fðmx�myÞ – REAL (KIND=nag_wp) array

fðmy � q � 1ð Þ þ rÞ must contain fq;r , for q ¼ 1; 2; . . . ;mx and r ¼ 1; 2; . . . ;my.

5.2 Optional Input Parameters

1: mx – INTEGER
2: my – INTEGER

Default: the dimension of the arrays x, y. (An error is raised if these dimensions are not equal.)

mx and my must specify mx and my respectively, the number of points along the x and y axis
that define the rectangular grid.

Constraint: mx � 4 and my � 4.

5.3 Output Parameters

1: px – INTEGER
2: py – INTEGER

px and py contain mx þ 4 and my þ 4, the total number of knots of the computed spline with
respect to the x and y variables, respectively.

3: lamdaðmxþ 4Þ – REAL (KIND=nag_wp) array
4: muðmyþ 4Þ – REAL (KIND=nag_wp) array

lamda contains the complete set of knots �i associated with the x variable, i.e., the interior knots
lamdað5Þ; lamdað6Þ; . . . ; lamdaðpx� 4Þ, as well as the additional knots

lamdað1Þ ¼ lamdað2Þ ¼ lamdað3Þ ¼ lamdað4Þ ¼ xð1Þ
and

lamdaðpx� 3Þ ¼ lamdaðpx� 2Þ ¼ lamdaðpx� 1Þ ¼ lamdaðpxÞ ¼ xðmxÞ
needed for the B-spline representation.

5: cðmx�myÞ – REAL (KIND=nag_wp) array

The coefficients of the spline interpolant. cðmy � i� 1ð Þ þ jÞ contains the coefficient cij
described in Section 3.

6: ifail – INTEGER

ifail ¼ 0 unless the function detects an error (see Section 5).
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6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail ¼ 1

On entry, mx < 4,
or my < 4.

ifail ¼ 2

On entry, either the values in the x array or the values in the y array are not in increasing order if
not already there.

ifail ¼ 3

A system of linear equations defining the B-spline coefficients was singular; the problem is too
ill-conditioned to permit solution.

ifail ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

ifail ¼ �399

Your licence key may have expired or may not have been installed correctly.

ifail ¼ �999

Dynamic memory allocation failed.

7 Accuracy

The main sources of rounding errors are in steps 2, 3, 6 and 7 of the algorithm described in Section 9.2.
It can be shown (see Cox (1975)) that the matrix Ax formed in step 2 has elements differing relatively
from their true values by at most a small multiple of 3�, where � is the machine precision. Ax is ‘totally
positive’, and a linear system with such a coefficient matrix can be solved quite safely by elimination
without pivoting. Similar comments apply to steps 6 and 7. Thus the complete process is numerically
stable.

8 Further Comments

8.1 Timing

The time taken by nag_interp_2d_spline_grid (e01da) is approximately proportional to mxmy.

8.2 Outline of Method Used

The process of computing the spline consists of the following steps:

1. choice of the interior x-knots �5, �6; . . . ; �mx
as �i ¼ xi�2, for i ¼ 5; 6; . . . ;mx,

2. formation of the system

AxE ¼ F;

where Ax is a band matrix of order mx and bandwidth 4, containing in its qth row the values at
xq of the B-splines in x, f is the mx by my rectangular matrix of values fq;r, and E denotes an
mx by my rectangular matrix of intermediate coefficients,

3. use of Gaussian elimination to reduce this system to band triangular form,

4. solution of this triangular system for E,

5. choice of the interior y knots �5, �6; . . . ; �my
as �i ¼ yi�2, for i ¼ 5; 6; . . . ;my,
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6. formation of the system

AyC
T ¼ ET;

where Ay is the counterpart of Ax for the y variable, and C denotes the mx by my rectangular
matrix of values of cij,

7. use of Gaussian elimination to reduce this system to band triangular form,

8. solution of this triangular system for CT and hence C.

For computational convenience, steps 2 and 3, and likewise steps 6 and 7, are combined so that the
formation of Ax and Ay and the reductions to triangular form are carried out one row at a time.

8.3 Evaluation of Computed Spline

The values of the computed spline at the points xk ; ykð Þ, for k ¼ 1; 2; . . . ;m, may be obtained in the
double array ff (see nag_fit_2dspline_evalv (e02de)), of length at least m, by the following call:

[ff, ifail] = e02de(x, y, lamda, mu, c);

where M ¼ m and the coordinates xk, yk are stored in X kð Þ, Y kð Þ. LAMDA, MU and C have the same values
as lamda, mu and c output from nag_interp_2d_spline_grid (e01da). (See nag_fit_2dspline_evalv
(e02de).)

To evaluate the computed spline on an mx by my rectangular grid of points in the x-y plane, which is
defined by the x coordinates stored in X jð Þ, for j ¼ 1; 2; . . . ;mx, and the y coordinates stored in Y kð Þ,
for k ¼ 1; 2; . . . ;my, returning the results in the double array ff (see nag_fit_2dspline_evalm (e02df))
which is of length at least mx�my, the following call may be used:

[fg, ifail] = e02df(x, y, lamda, mu, c);

where MX ¼ mx, MY ¼ my. LAMDA, MU and C have the same values as lamda, mu and c output from
nag_interp_2d_spline_grid (e01da).

The result of the spline evaluated at grid point j; kð Þ is returned in element (MY� j� 1ð Þ þ k) of the
array FG.

9 Example

This example reads in values of mx, xq , for q ¼ 1; 2; . . . ;mx, my and yr , for r ¼ 1; 2; . . . ;my, followed
by values of the ordinates fq;r defined at the grid points xq; yr

� �
.

It then calls nag_interp_2d_spline_grid (e01da) to compute a bicubic spline interpolant of the data
values, and prints the values of the knots and B-spline coefficients. Finally it evaluates the spline at a
small sample of points on a rectangular grid.

9.1 Program Text

function e01da_example

fprintf(’e01da example results\n\n’);

x = [1.0 1.10 1.30 1.50 1.60 1.80 2.0];
f = [1.0 1.21 1.69 2.25 2.56 3.24 4.0;

1.1 1.31 1.79 2.35 2.66 3.34 4.1;
1.4 1.61 2.09 2.65 2.96 3.64 4.4;
1.7 1.91 2.39 2.95 3.26 3.94 4.7;
1.9 2.11 2.59 3.15 3.46 4.14 4.9;
2.0 2.21 2.69 3.25 3.56 4.24 5.0];

y = [0.0;
0.1;
0.4;
0.7;
0.9;
1.0];
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[px, py, lamda, mu, c, ifail] = e01da( ...
x, y, f);

% Display the knot sets, LAMDA and MU.

fprintf(’\n i knot lamda(i) j knot mu(j)\n’);
j = 4:min(px,py)-3;
fprintf(’%16d%12.4f%11d%12.4f\n’,[j’ lamda(j) j’ mu(j)]’);
if (px>py);

j = py-2:px-3;
fprintf(’%16d%12.4f\n’,[j’ lamda(j)]’);

elseif (px<py);
j = px-2:py-3;
fprintf(’%16d%12.4f\n’,[j’ mu(j)]’)

end

% Display the spline coefficients.
c = reshape(c, size(f’));
fprintf(’\n’);
disp(’The B-Spline coefficients:’);
disp(c’);

% Evaluate spline on regular 6-by-6 mesh
dx = (x(end)-x(1))/5;
dy = (y(end)-y(1))/5;
tx = [x(1):dx:x(end)];
ty = [y(1):dy:y(end)]’;

[ff, ifail] = e02df( ...
tx, ty, lamda, mu, c);

% Display evaluations as matrix
ff = reshape(ff,[6,6]);

matrix = ’General’;
diag = ’Non-unit’;
format = ’F8.3’;
title = ’Spline evaluated on a regular mesh (x across, y down):’;
chlab = ’Character’;
rlabs = cellstr(num2str(tx’));
clabs = cellstr(num2str(ty));
ncols = nag_int(80);
indent = nag_int(0);
[ifail] = x04cb( ...

matrix, diag, ff, format, title, chlab, ...
rlabs, chlab, clabs, ncols, indent);

9.2 Program Results

e01da example results

i knot lamda(i) j knot mu(j)
4 1.0000 4 0.0000
5 1.0000 5 0.0000
6 2.0000 6 1.0000
7 2.0000 7 1.0000
8 2.0000

The B-Spline coefficients:
1.0000 1.1333 1.3667 1.7000 1.9000 2.0000 1.2000
1.3333 1.5667 1.9000 2.1000 2.2000 1.5833 1.7167
1.9500 2.2833 2.4833 2.5833 2.1433 2.2767 2.5100
2.8433 3.0433 3.1433 2.8667 3.0000 3.2333 3.5667
3.7667 3.8667 3.4667 3.6000 3.8333 4.1667 4.3667
4.4667 4.0000 4.1333 4.3667 4.7000 4.9000 5.0000

Spline evaluated on a regular mesh (x across, y down):
0 0.2 0.4 0.6 0.8 1

1 1.000 1.440 1.960 2.560 3.240 4.000
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1.2 1.200 1.640 2.160 2.760 3.440 4.200
1.4 1.400 1.840 2.360 2.960 3.640 4.400
1.6 1.600 2.040 2.560 3.160 3.840 4.600
1.8 1.800 2.240 2.760 3.360 4.040 4.800

2 2.000 2.440 2.960 3.560 4.240 5.000
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