NAG Toolbox

nag_interp_2d_spline_grid (e01da)

1 Purpose

nag_interp_2d_spline_grid (e01da) computes a bicubic spline interpolating surface through a set of data values, given on a rectangular grid in the x-y plane.

2 Syntax

```
[px, py, lamda, mu, c, ifail] = nag_interp_2d_spline_grid(x, y, f, 'mx', mx,
'my', my)
[px, py, lamda, mu, c, ifail] = e0lda(x, y, f, 'mx', mx, 'my', my)
```

3 Description

nag_interp_2d_spline_grid (e01da) determines a bicubic spline interpolant to the set of data points $(x_q, y_r, f_{q,r})$, for $q = 1, 2, ..., m_x$ and $r = 1, 2, ..., m_y$. The spline is given in the B-spline representation

$$s(x,y) = \sum_{i=1}^{m_x} \sum_{j=1}^{m_y} c_{ij} M_i(x) N_j(y),$$

such that

$$s(x_q, y_r) = f_{q,r},$$

where $M_i(x)$ and $N_j(y)$ denote normalized cubic B-splines, the former defined on the knots λ_i to λ_{i+4} and the latter on the knots μ_j to μ_{j+4} , and the c_{ij} are the spline coefficients. These knots, as well as the coefficients, are determined by the function, which is derived from the function B2IRE in Anthony *et al.* (1982). The method used is described in Section 9.2.

For further information on splines, see Hayes and Halliday (1974) for bicubic splines and de Boor (1972) for normalized B-splines.

Values and derivatives of the computed spline can subsequently be computed by calling nag_fit_2dspline_evalv (e02de), nag_fit_2dspline_evalm (e02df) or nag_fit_2dspline_derivm (e02dh) as described in Section 9.3.

4 References

Anthony G T, Cox M G and Hayes J G (1982) DASL – Data Approximation Subroutine Library National Physical Laboratory

Cox M G (1975) An algorithm for spline interpolation J. Inst. Math. Appl. 15 95-108

de Boor C (1972) On calculating with B-splines J. Approx. Theory 6 50-62

Hayes J G and Halliday J (1974) The least squares fitting of cubic spline surfaces to general data sets J. Inst. Math. Appl. 14 89–103

5 Parameters

5.1 Compulsory Input Parameters

- 1: $\mathbf{x}(\mathbf{mx}) \text{REAL} (\text{KIND=nag_wp}) \text{ array}$
- 2: $y(my) REAL (KIND=nag_wp)$ array

 $\mathbf{x}(q)$ and $\mathbf{y}(r)$ must contain x_q , for $q = 1, 2, ..., m_x$, and y_r , for $r = 1, 2, ..., m_y$, respectively. *Constraints*:

 $\mathbf{x}(q) < \mathbf{x}(q+1), \text{ for } q = 1, 2, \dots, m_x - 1;$ $\mathbf{y}(r) < \mathbf{y}(r+1), \text{ for } r = 1, 2, \dots, m_y - 1.$

3: $f(mx \times my) - REAL (KIND=nag_wp) array$

 $\mathbf{f}(m_y \times (q-1) + r)$ must contain $f_{q,r}$, for $q = 1, 2, \ldots, m_x$ and $r = 1, 2, \ldots, m_y$.

5.2 Optional Input Parameters

- 1: **mx** INTEGER
- 2: **my** INTEGER

Default: the dimension of the arrays x, y. (An error is raised if these dimensions are not equal.)

mx and **my** must specify m_x and m_y respectively, the number of points along the x and y axis that define the rectangular grid.

Constraint: $\mathbf{mx} \ge 4$ and $\mathbf{my} \ge 4$.

5.3 Output Parameters

- 1: **px** INTEGER
- 2: **py** INTEGER

px and **py** contain $m_x + 4$ and $m_y + 4$, the total number of knots of the computed spline with respect to the x and y variables, respectively.

- 3: lamda(mx + 4) REAL (KIND=nag_wp) array
- 4: $mu(my + 4) REAL (KIND=nag_wp) array$

lamda contains the complete set of knots λ_i associated with the x variable, i.e., the interior knots **lamda**(5), **lamda**(6), ..., **lamda**(**px** - 4), as well as the additional knots

$$lamda(1) = lamda(2) = lamda(3) = lamda(4) = x(1)$$

and

$$lamda(px - 3) = lamda(px - 2) = lamda(px - 1) = lamda(px) = x(mx)$$

needed for the B-spline representation.

5: $c(mx \times my) - REAL (KIND=nag_wp) array$

The coefficients of the spline interpolant. $\mathbf{c}(m_y \times (i-1) + j)$ contains the coefficient c_{ij} described in Section 3.

6: **ifail** – INTEGER

if ail = 0 unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail
$$= 1$$

On entry, $\mathbf{mx} < 4$, or $\mathbf{my} < 4$.

ifail = 2

On entry, either the values in the x array or the values in the y array are not in increasing order if not already there.

ifail = 3

A system of linear equations defining the B-spline coefficients was singular; the problem is too ill-conditioned to permit solution.

ifail = -99

An unexpected error has been triggered by this routine. Please contact NAG.

ifail = -399

Your licence key may have expired or may not have been installed correctly.

ifail = -999

Dynamic memory allocation failed.

7 Accuracy

The main sources of rounding errors are in steps 2, 3, 6 and 7 of the algorithm described in Section 9.2. It can be shown (see Cox (1975)) that the matrix A_x formed in step 2 has elements differing relatively from their true values by at most a small multiple of 3ϵ , where ϵ is the *machine precision*. A_x is 'totally positive', and a linear system with such a coefficient matrix can be solved quite safely by elimination without pivoting. Similar comments apply to steps 6 and 7. Thus the complete process is numerically stable.

8 Further Comments

8.1 Timing

The time taken by nag_interp_2d_spline_grid (e01da) is approximately proportional to $m_x m_y$.

8.2 Outline of Method Used

The process of computing the spline consists of the following steps:

- 1. choice of the interior x-knots λ_5 , $\lambda_6, \ldots, \lambda_{m_x}$ as $\lambda_i = x_{i-2}$, for $i = 5, 6, \ldots, m_x$,
- 2. formation of the system

$$A_x E = F,$$

where A_x is a band matrix of order m_x and bandwidth 4, containing in its *q*th row the values at x_q of the B-splines in x, **f** is the m_x by m_y rectangular matrix of values $f_{q,r}$, and E denotes an m_x by m_y rectangular matrix of intermediate coefficients,

- 3. use of Gaussian elimination to reduce this system to band triangular form,
- 4. solution of this triangular system for E,
- 5. choice of the interior y knots μ_5 , μ_6 , ..., μ_{m_y} as $\mu_i = y_{i-2}$, for $i = 5, 6, \ldots, m_y$,

6. formation of the system

$$A_y C^{\mathrm{T}} = E^{\mathrm{T}},$$

where A_y is the counterpart of A_x for the y variable, and C denotes the m_x by m_y rectangular matrix of values of c_{ij} ,

- 7. use of Gaussian elimination to reduce this system to band triangular form,
- 8. solution of this triangular system for C^{T} and hence C.

For computational convenience, steps 2 and 3, and likewise steps 6 and 7, are combined so that the formation of A_x and A_y and the reductions to triangular form are carried out one row at a time.

8.3 Evaluation of Computed Spline

The values of the computed spline at the points (x_k, y_k) , for k = 1, 2, ..., m, may be obtained in the double array **ff** (see nag_fit_2dspline_evalv (e02de)), of length at least m, by the following call:

[ff, ifail] = e02de(x, y, lamda, mu, c);

where M = m and the coordinates x_k , y_k are stored in X(k), Y(k). LAMDA, MU and C have the same values as **lamda**, **mu** and **c** output from nag_interp_2d_spline_grid (e01da). (See nag_fit_2dspline_evalv (e02de).)

To evaluate the computed spline on an m_x by m_y rectangular grid of points in the x-y plane, which is defined by the x coordinates stored in X(j), for $j = 1, 2, ..., m_x$, and the y coordinates stored in Y(k), for $k = 1, 2, ..., m_y$, returning the results in the double array **ff** (see nag_fit_2dspline_evalm (e02df)) which is of length at least $\mathbf{mx} \times \mathbf{my}$, the following call may be used:

[fg, ifail] = e02df(x, y, lamda, mu, c);

where $MX = m_x$, $MY = m_y$. LAMDA, MU and C have the same values as **lamda**, **mu** and **c** output from nag interp 2d spline grid (e01da).

The result of the spline evaluated at grid point (j, k) is returned in element $(MY \times (j-1) + k)$ of the array FG.

9 Example

This example reads in values of m_x , x_q , for $q = 1, 2, ..., m_x$, m_y and y_r , for $r = 1, 2, ..., m_y$, followed by values of the ordinates $f_{q,r}$ defined at the grid points (x_q, y_r) .

It then calls nag_interp_2d_spline_grid (e01da) to compute a bicubic spline interpolant of the data values, and prints the values of the knots and B-spline coefficients. Finally it evaluates the spline at a small sample of points on a rectangular grid.

9.1 Program Text

function e01da_example

fprintf('e0lda example results\n\n');

Х	=	[1.0	1.10	1.30	1.50	1.60	1.80	2.0];
f	=	[1.0	1.21	1.69	2.25	2.56	3.24	4.0;
		1.1	1.31	1.79	2.35	2.66	3.34	4.1;
		1.4	1.61	2.09	2.65	2.96	3.64	4.4;
		1.7	1.91	2.39	2.95	3.26	3.94	4.7;
		1.9	2.11	2.59	3.15	3.46	4.14	4.9;
		2.0	2.21	2.69	3.25	3.56	4.24	5.0];
У	=	[0.0;						
		0.1;						
		0.4;						
		0.7;						
		0.9;						
		1.0];						

```
[px, py, lamda, mu, c, ifail] = e01da( ...
                                          x, y, f);
% Display the knot sets, LAMDA and MU.
fprintf('\n
                             i knot lamda(i)
                                                      j
                                                            knot mu(j)\n');
j = 4:min(px,py)-3;
fprintf('%16d%12.4f%11d%12.4f\n',[j' lamda(j) j' mu(j)]');
if (px>py);
  j = py-2:px-3;
  fprintf('%16d%12.4f\n',[j' lamda(j)]');
elseif (px<py);</pre>
  j = px-2:py-3;
  fprintf('%16d%12.4f\n',[j' mu(j)]')
end
% Display the spline coefficients.
c = reshape(c, size(f'));
fprintf(' n');
disp('The B-Spline coefficients:');
disp(c');
% Evaluate spline on regular 6-by-6 mesh
dx = (x(end) - x(1)) / 5;
dy = (y(end) - y(1)) / 5;
tx = [x(1):dx:x(end)];
ty = [y(1):dy:y(end)]';
[ff, ifail] = e02df( \dots
                      tx, ty, lamda, mu, c);
% Display evaluations as matrix
ff = reshape(ff, [6, 6]);
matrix = 'General';
diag = 'Non-unit';
format = 'F8.3';
title = 'Spline evaluated on a regular mesh (x across, y down):';
chlab = 'Character';
rlabs = cellstr(num2str(tx'));
clabs = cellstr(num2str(ty));
ncols = nag_int(80);
indent = nag_int(0);
[ifail] = x04cb(\ldots
                   matrix, diag, ff, format, title, chlab, ...
                   rlabs, chlab, clabs, ncols, indent);
```

9.2 Program Results

e01da example results

		i 4 5 6 7 8	knot lamda(i) 1.0000 2.0000 2.0000 2.0000 2.0000) j 4 5 6 7	knot mu(j) 0.0000 0.0000 1.0000 1.0000		
The B-	Spline	coeffi	cients:				
1.	0000	1.133	3 1.3667	1.7000	1.9000	2.0000	1.2000
1.	3333	1.566	7 1.9000	2.1000	2.2000	1.5833	1.7167
1.	9500	2.283	3 2.4833	2.5833	2.1433	2.2767	2.5100
2.	8433	3.043	3 3.1433	2.8667	3.0000	3.2333	3.5667
3.	7667	3.866	7 3.4667	3.6000	3.8333	4.1667	4.3667
4.	4667	4.000	0 4.1333	4.3667	4.7000	4.9000	5.0000
Splin 1	e evalu (1.000) 0	n a regular n .2 0.4 40 1.960	0.6	ross, y down) 0.8 1 .240 4.000	:	

1.41.4001.8402.3602.9603.6404.4001.61.6002.0402.5603.1603.8404.6001.81.8002.2402.7603.3604.0404.80022.0002.4402.9603.5604.2405.000	1.2			2.160		3.440	4.200
1.8 1.800 2.240 2.760 3.360 4.040 4.800	1.4	1.400	1.840	2.360	2.960	3.640	4.400
	1.6	1.600	2.040	2.560	3.160	3.840	4.600
2 2.000 2.440 2.960 3.560 4.240 5.000	1.8	1.800	2.240	2.760	3.360	4.040	4.800
	2	2.000	2.440	2.960	3.560	4.240	5.000