
NAG Toolbox

nag_interp_1d_spline (e01ba)

1 Purpose

nag_interp_1d_spline (e01ba) determines a cubic spline interpolant to a given set of data.

2 Syntax

[llaammddaa, cc, iiffaaiill] = nag_interp_1d_spline(xx, yy, ’m’, mm)

[llaammddaa, cc, iiffaaiill] = e01ba(xx, yy, ’m’, mm)

3 Description

nag_interp_1d_spline (e01ba) determines a cubic spline s xð Þ, defined in the range x1 � x � xm, which
interpolates (passes exactly through) the set of data points xi; yið Þ, for i ¼ 1; 2; . . . ;m, where m � 4 and
x1 < x2 < � � � < xm. Unlike some other spline interpolation algorithms, derivative end conditions are
not imposed. The spline interpolant chosen has m� 4 interior knots �5; �6; . . . ; �m, which are set to the
values of x3; x4; . . . ; xm�2 respectively. This spline is represented in its B-spline form (see Cox (1975)):

s xð Þ ¼
Xm

i¼1

ciNi xð Þ;

where Ni xð Þ denotes the normalized B-spline of degree 3, defined upon the knots �i; �iþ1; . . . ; �iþ4, and
ci denotes its coefficient, whose value is to be determined by the function.

The use of B-splines requires eight additional knots �1, �2, �3, �4, �mþ1, �mþ2, �mþ3 and �mþ4 to be
specified; nag_interp_1d_spline (e01ba) sets the first four of these to x1 and the last four to xm.

The algorithm for determining the coefficients is as described in Cox (1975) except that QR
factorization is used instead of LU decomposition. The implementation of the algorithm involves
setting up appropriate information for the related function nag_fit_1dspline_knots (e02ba) followed by a
call of that function. (See nag_fit_1dspline_knots (e02ba) for further details.)

Values of the spline interpolant, or of its derivatives or definite integral, can subsequently be computed
as detailed in Section 9.

4 References

Cox M G (1975) An algorithm for spline interpolation J. Inst. Math. Appl. 15 95–108

Cox M G (1977) A survey of numerical methods for data and function approximation The State of the
Art in Numerical Analysis (ed D A H Jacobs) 627–668 Academic Press

5 Parameters

5.1 Compulsory Input Parameters

1: xðmÞ – REAL (KIND=nag_wp) array

xðiÞ must be set to xi, the ith data value of the independent variable x, for i ¼ 1; 2; . . . ;m.

Constraint: xðiÞ < xði þ 1Þ, for i ¼ 1; 2; . . . ;m� 1.

2: yðmÞ – REAL (KIND=nag_wp) array

yðiÞ must be set to yi, the ith data value of the dependent variable y, for i ¼ 1; 2; . . . ;m.
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5.2 Optional Input Parameters

1: m – INTEGER

Default: the dimension of the arrays x, y. (An error is raised if these dimensions are not equal.)

m, the number of data points.

Constraint: m � 4.

5.3 Output Parameters

1: lamdaðlckÞ – REAL (KIND=nag_wp) array

lck ¼ mþ 4.

The value of �i, the ith knot, for i ¼ 1; 2; . . . ;mþ 4.

2: cðlckÞ – REAL (KIND=nag_wp) array

lck ¼ mþ 4.

The coefficient ci of the B-spline Ni xð Þ, for i ¼ 1; 2; . . . ;m. The remaining elements of the array
are not used.

3: ifail – INTEGER

ifail ¼ 0 unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail ¼ 1

On entry, m < 4,
or lck < mþ 4,
or lwrk < 6�mþ 16.

ifail ¼ 2

The x-values fail to satisfy the condition

xð1Þ < xð2Þ < xð3Þ < � � � < xðmÞ.

ifail ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

ifail ¼ �399

Your licence key may have expired or may not have been installed correctly.

ifail ¼ �999

Dynamic memory allocation failed.

7 Accuracy

The rounding errors incurred are such that the computed spline is an exact interpolant for a slightly
perturbed set of ordinates yi þ �yi. The ratio of the root-mean-square value of the �yi to that of the yi is
no greater than a small multiple of the relative machine precision.
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8 Further Comments

The time taken by nag_interp_1d_spline (e01ba) is approximately proportional to m.

All the xi are used as knot positions except x2 and xm�1. This choice of knots (see Cox (1977)) means
that s xð Þ is composed of m� 3 cubic arcs as follows. If m ¼ 4, there is just a single arc space spanning
the whole interval x1 to x4. If m � 5, the first and last arcs span the intervals x1 to x3 and xm�2 to xm
respectively. Additionally if m � 6, the ith arc, for i ¼ 2; 3; . . . ;m� 4, spans the interval xiþ1 to xiþ2.

After the call

[lamda, c, ifail] = e01ba(x, y, lck);

the following operations may be carried out on the interpolant s xð Þ.
The value of s xð Þ at x ¼ x can be provided in the double variable s by the call

[s, ifail] = e02bb(lamda, c, x);

(see nag_fit_1dspline_eval (e02bb)).

The values of s xð Þ and its first three derivatives at x ¼ x can be provided in the double array s of
dimension 4, by the call

[s, ifail] = e02bc(lamda, c, x, left);

(see nag_fit_1dspline_deriv (e02bc)).

Here left must specify whether the left- or right-hand value of the third derivative is required (see
nag_fit_1dspline_deriv (e02bc) for details).

The value of the integral of s xð Þ over the range x1 to xm can be provided in the double variable dint by

[dint, ifail] = e02bd(lamda, c);

(see nag_fit_1dspline_integ (e02bd)).

9 Example

This example sets up data from 7 values of the exponential function in the interval 0 to 1.
nag_interp_1d_spline (e01ba) is then called to compute a spline interpolant to these data.

The spline is evaluated by nag_fit_1dspline_eval (e02bb), at the data points and at points halfway
between each adjacent pair of data points, and the spline values and the values of ex are printed out.

9.1 Program Text

function e01ba_example

fprintf(’e01ba example results\n\n’);

x = [0 0.2 0.4 0.6 0.75 0.9 1];
y = exp(x);
[lamda, c, ifail] = e01ba(x, y);

fprintf(’\n j knot lamda(j+2) b-spline coeff c(j)\n\n’);
j = 1;
fprintf(’%4d%35.4f\n’, j, c(1));
m = size(x,2);
for j = 2:m - 1;

fprintf(’%4d%15.4f%20.4f\n’, j, lamda(j+2), c(j));
end
fprintf(’%4d%35.4f\n’, m, c(m));
fprintf(’\n R Abscissa Ordinate Spline\n\n’);
for r = 1:m;

[fit, ifail] = e02bb( ...
lamda, c, x(r));

fprintf(’%4d%15.4f%20.4f%20.4f\n’, r, x(r), y(r), fit);
if r<m;

xarg = (x(r)+x(r+1))/2;
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[fit, ifail] = e02bb( ...
lamda, c, xarg);

fprintf(’%19.4f%40.4f\n’, xarg, fit);
end

end

9.2 Program Results

e01ba example results

j knot lamda(j+2) b-spline coeff c(j)

1 1.0000
2 0.0000 1.1336
3 0.4000 1.3726
4 0.6000 1.7827
5 0.7500 2.1744
6 1.0000 2.4918
7 2.7183

R Abscissa Ordinate Spline

1 0.0000 1.0000 1.0000
0.1000 1.1052

2 0.2000 1.2214 1.2214
0.3000 1.3498

3 0.4000 1.4918 1.4918
0.5000 1.6487

4 0.6000 1.8221 1.8221
0.6750 1.9640

5 0.7500 2.1170 2.1170
0.8250 2.2819

6 0.9000 2.4596 2.4596
0.9500 2.5857

7 1.0000 2.7183 2.7183
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