D06 — Mesh Generation d06ba

NAG Toolbox

nag_mesh 2d _gen boundary (d06ba)

1 Purpose

nag mesh 2d gen boundary (d06ba) generates a boundary mesh on a closed connected subdomain {2
of R?.

2 Syntax
[nvb, coor, nedge, edge, user, ifail] = nag_mesh_2d_gen_boundary(coorch, lined,
fbnd, crus, rate, nlcomp, lcomp, nvmax, nedmx, itrace, ’‘nlines’, nlines,
"sdcrus’, sdcrus, ’'ncomp’, ncomp, ’'user’, user)
[nvb, coor, nedge, edge, user, ifail] = dO6ba(coorch, lined, fbnd, crus, rate,
nlcomp, lcomp, nvmax, nedmx, itrace, ’'nlines’, nlines, ’'sdcrus’, sdcrus,

'ncomp’, ncomp, ’‘user’, user)

3 Description

Given a closed connected subdomain 2 of R?, whose boundary 042 is divided by characteristic points
into m distinct line segments, nag_mesh 2d gen boundary (d06ba) generates a boundary mesh on 9f2.
Each line segment may be a straight line, a curve defined by the equation f(z,y) =0, or a polygonal
curve defined by a set of given boundary mesh points.

This function is primarily designed for use with either nag mesh 2d gen inc (d06aa) (a simple
incremental method) or nag mesh 2d gen delaunay (d06ab) (Delaunay—Voronoi method) or nag
mesh_2d gen front (dO6ac) (Advancing Front method) to triangulate the interior of the domain (2. For
more details about the boundary and interior mesh generation, consult the D06 Chapter Introduction as
well as George and Borouchaki (1998).

This function is derived from material in the MODULEF package from INRIA (Institut National de
Recherche en Informatique et Automatique).

4 References

George P L and Borouchaki H (1998) Delaunay Triangulation and Meshing: Application to Finite
Elements Editions HERMES, Paris

S Parameters

5.1 Compulsory Input Parameters

1: coorch(2, nlines) — REAL (KIND=nag_ wp) array
coorch(1,:) contains the x coordinate of the ith characteristic point, for i =1,2,..., nlines;
while coorch(2,4) contains the corresponding y coordinate.

2: lined(4, nlines) — INTEGER array

The description of the lines that define the boundary domain. The line 4, for i =1,2,...,m, is
defined as follows:

lined(1,7)
The number of points on the line, including two end points.

Mark 25 d06ba. 1

d06ba NAG Toolbox for MATLAB Manual

lined (2, 7)
The first end point of the line. If lined(2,¢) = j, then the coordinates of the first end point
are those stored in coorch(:, j).

lined(3, 1)
The second end point of the line. If lined(3,4) = k, then the coordinates of the second end
point are those stored in coorch(:, k).

lined(4, 1)
This defines the type of line segment connecting the end points. Additional information is
conveyed by the numerical value of lined(4,4) as follows:

(1) lined(4,i) > 0, the line is described in fbnd with lined(4,4) as the index. In this case,
the line must be described in the trigonometric (anticlockwise) direction;

(ii) lined(4,7) = 0, the line is a straight line;

(iii) if lined(4,¢) < 0, say (—p), then the line is a polygonal arc joining the end points and
interior points specified in crus. In this case the line contains the points whose
coordinates are stored in
coorch(:, j),

crus(:,p),

crus(:;,p+1),...,crus(:,p+r—3),

coorch(:, k) ,

where z € {1,2}, r = lined(1,7), j = lined(2,7) and k = lined(3,7).

Constraints:

2 < lined(1,7);

1 <lined(2,7) < nlines;

1 <lined(3,¢) < nlines;

lined(2, 7) # lined(3, i), for i =1,2,..., nlines.

For each line described by fbnd (lines with lined(4,4) > 0, for ¢ = 1,2, ..., nlines) the two end
points (lined(2,7) and lined(3,%)) lie on the curve defined by index lined(4,4) in fbnd, i.e.,

fbnd(lined(4, i), coorch(1,lined(2,%)), coorch(2,lined(2,%)), user, user) = 0;

fbnd(lined (4, 7), coorch(1,lined(3, 7)), coorch(2,lined(3, 7)), user, user) = 0, for
1=1,2,...,nlines.

For all lines described as polygonal arcs (lines with lined(4,4) < 0, for = 1,2,... nlines) the
sets of intermediate points (i.e.,[—lined(4,) : —lined(4,4) + lined(1,7) — 3] for all ¢ such that
lined(4,7) < 0) are not overlapping. This can be expressed as:

—lined(4,i) + lined(1,i) =3 = Y {lined(1,4) — 2}
{7,lined(4,7)<0}

or
—lined (4, i) + lined(1,7) — 2 = —lined(4, j),

for a j such that j=1,2,... nlines, j # i and lined(4, j) < 0.

3: fond — REAL (KIND=nag wp) FUNCTION, supplied by the user.

fond must be supplied to calculate the value of the function which describes the curve
{(z,y) € R?; such that f(z,y) = 0} on segments of the boundary for which lined(4,7) > 0. If
there are no boundaries for which lined(4,i) >0 fbnd will never be referenced by
nag mesh 2d gen boundary (dO6ba) and fbnd may be the string ’d0Oébad’. (nag mesh 2d -
gen_boundary dummy fbnd (dO6bad) is included in the NAG Toolbox.)

d06ba.2 Mark 25

D06 — Mesh Generation d06ba

[result, user] = fbnd(ii, x, y, user)

Input Parameters
1: ii — INTEGER
lined(4,), the reference index of the line (portion of the contour) ¢ described.
2: x — REAL (KIND=nag_ wp)
3: y — REAL (KIND=nag wp)

The values of z and y at which f(z,y) is to be evaluated.

4: user — REAL (KIND=nag_wp) array
fbnd is called from nag mesh 2d gen boundary (dO6ba) with the object supplied to
nag mesh 2d gen boundary (d06ba).

Output Parameters

1: result

The value of f(z,y) at the specified point.

2: user — REAL (KIND=nag_wp) array

4: crus(2,sderus) — REAL (KIND=nag_wp) array

The coordinates of the intermediate points for polygonal arc lines. For a line ¢ defined as a
polygonal arc (i.e., lined(4,i) <0), if p= —lined(4,7), then crus(l,k), for
k=p,...,p+lined(1,7) — 3, must contain the x coordinate of the consecutive intermediate
points for this line. Similarly crus(2,k), for k=p,...,p+ lined(1,7) — 3, must contain the
corresponding y coordinate.

5: rate(nlines) — REAL (KIND=nag_wp) array

rate(i) is the geometric progression ratio between the points to be generated on the line i, for
i=1,2,...,m and lined(4,7) > 0.

If lined(4,4) < 0, rate(i) is not referenced.
Constraint: if lined(4,7) > 0, rate(i) > 0.0, for = 1,2,..., nlines.

6: nlcomp(ncomp) — INTEGER array

[nlcomp(k)| is the number of line segments in component k of the contour. The line ¢ of
component k runs in the direction lined(2,) to lined(3,) if nlcomp(k) > 0, and in the opposite
direction otherwise; for k =1,2,...,n.

Constraints:

1 < |nlcomp(k)| < nlines, for £ =1,2,..., ncomp;
n

Z|nlc0mp(k)| = nlines.
k=1

7: Icomp(nlines) — INTEGER array

Icomp must contain the list of line numbers for the each component of the boundary. Specifically,
the line numbers for the kth component of the boundary, for £ =1,2,..., ncomp, must be in

k
elements /1 — 1 to [2 — 1 of lcomp, where [2 = Z|nlc0mp(i)| and [l =12+ 1 — |nlcomp(k)|.

i=1

Constraint: lcomp must hold a valid permutation of the integers [, nlines].

Mark 25 d06ba.3

d06ba NAG Toolbox for MATLAB Manual

8: nvmax — INTEGER
The maximum number of the boundary mesh vertices to be generated.

Constraint: nvmax > nlines.

9: nedmx — INTEGER
The maximum number of boundary edges in the boundary mesh to be generated.

Constraint: nedmx > 1.

10: itrace — INTEGER
The level of trace information required from nag mesh 2d gen boundary (d06ba).

itrace = 0 or itrace < —1
No output is generated.

itrace = 1
Output from the boundary mesh generator is printed on the current advisory message unit
(see nag_file set unit advisory (x04ab)). This output contains the input information of
each line and each connected component of the boundary.

itrace = —1
An analysis of the output boundary mesh is printed on the current advisory message unit.
This analysis includes the orientation (clockwise or anticlockwise) of each connected
component of the boundary. This information could be of interest to you, especially if an
interior meshing is carried out using the output of this function, calling either
nag_mesh _2d gen inc (d06aa), nag mesh 2d gen delaunay (d06ab) or nag mesh 2d
gen_front (d06ac).

itrace > 1
The output is similar to that produced when itrace =1, but the coordinates of the
generated vertices on the boundary are also output.

You are advised to set itrace =0, unless you are experienced with finite element mesh
generation.

5.2 Optional Input Parameters
1: nlines — INTEGER

Default: the dimension of the arrays coorch, lined, rate, lcomp. (An error is raised if these
dimensions are not equal.)

m, the number of lines that define the boundary of the closed connected subdomain (this equals
the number of characteristic points which separate the entire boundary 9f? into lines).

Constraint: nlines > 1.

2: sdcrus — INTEGER
Default: the second dimension of the array crus.
The second dimension of the array crus.
Constraint: sdcrus > > {lined(1,7) — 2}.
{i.lined(4,i)<0}
3: ncomp — INTEGER
Default: the dimension of the array nlcomp.
n, the number of separately connected components of the boundary.

Constraint: ncomp > 1.

d06ba.4 Mark 25

D06 — Mesh Generation d06ba

4: user — REAL (KIND=nag wp) array

user is not used by nag mesh 2d gen boundary (d06ba), but is passed to fbnd. Note that for
large objects it may be more efficient to use a global variable which is accessible from the m-
files than to use user.

5.3 Output Parameters

1: nvb — INTEGER

The total number of boundary mesh vertices generated.

2: coor(2,nvmax) — REAL (KIND=nag_wp) array
coor(1,7) will contain the x coordinate of the ith boundary mesh vertex generated, for
i=1,2,...,nvb; while coor(2,7) will contain the corresponding y coordinate.

3: nedge — INTEGER

The total number of boundary edges in the boundary mesh.

4: edge(3,nedmx) — INTEGER array

The specification of the boundary edges. edge(1,;) and edge(2,j) will contain the vertex
numbers of the two end points of the jth boundary edge. edge(3, ;) is a reference number for the
jth boundary edge and

edge(3,7) = lined(4,), where 7 and j are such that the jth edges is part of the ith line of
the boundary and lined(4,7) > 0;

edge(3,7) = 100 + |lined(4,4)|, where i and j are such that the jth edges is part of the ith
line of the boundary and lined(4,7) < 0.

5: user — REAL (KIND=nag_wp) array
6: ifail — INTEGER

ifail = O unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail = 1
On entry, nlines < 1;
or nvmax < nlines;
or nedmx < 1;
or ncomp < 1;
or lrwork < 2 x (nlines + sderus) + 2 x max ;> {lined(1,7)} x nlines;
or liwork < > {lined(1,7) — 2} + 8 x nlines + nvmax + 3 x

{i,lined(4,i)<0}
nedmx + 2 x sdcrus;

or sderus < > {lined(1,7) —2};
{i lined(4,i) <0}
or rate(i) < 0.0 for some ¢ = 1,2,...,nlines with lined(4,7) > 0,
or lined(1,4) < 2 for some i = 1,2, ..., nlines;
or lined(2,7) < 1 or lined(2,¢) > nlines for some ¢ = 1,2,..., nlines;
or lined(3,7) < 1 or lined(3,7) > nlines for some ¢ = 1,2,..., nlines;
or lined(2,7) = lined(3,4) for some ¢ = 1,2,..., nlines;
or nlcomp(k) = 0, or [nlcomp(k)| > nlines for a k= 1,2,...,ncomp;
n
or Z|nlcomp(k)| # nlines;
k=1

Mark 25 d06ba.5

d06ba NAG Toolbox for MATLAB Manual

or Icomp does not represent a valid permutation of the integers in [1, nlines];

or one of the end points for a line 4 described by the user-supplied function (lines with
lined(4,7) > 0, for i =1,2,...,nlines) does not belong to the corresponding curve in
fbnd;

or the intermediate points for the lines described as polygonal arcs (lines with

lined(4,7) < 0, for = 1,2,..., nlines) are overlapping.

ifail = 2
An error has occurred during the generation of the boundary mesh. It appears that nedmx is not
large enough, so you are advised to increase the value of nedmx.

ifail = 3
An error has occurred during the generation of the boundary mesh. It appears that nvmax is not
large enough, so you are advised to increase the value of nvmax.

ifail = 4
An error has occurred during the generation of the boundary mesh. Check the definition of each
line (the argument lined) and each connected component of the boundary (the arguments
nlcomp, and lcomp, as well as the coordinates of the characteristic points. Setting itrace > 0
may provide more details.

ifail = —99

An unexpected error has been triggered by this routine. Please contact NAG.

ifail = —399

Your licence key may have expired or may not have been installed correctly.

ifail = —999

Dynamic memory allocation failed.

7 Accuracy

Not applicable.

8 Further Comments

The boundary mesh generation technique in this function has a ‘tree’ structure. The boundary should be
partitioned into geometrically simple segments (straight lines or curves) delimited by characteristic
points. Then, the lines should be assembled into connected components of the boundary domain.

Using this strategy, the inputs to that function can be built up, following the requirements stated in
Section 5:

the characteristic and the user-supplied intermediate points:
nlines, sdcrus, coorch and crus;
the characteristic lines:
lined, fbnd, rate;
finally the assembly of lines into the connected components of the boundary:
ncomp, and
nlcomp, lcomp.

The example below details the use of this strategy.

d06ba.6 Mark 25

D06 — Mesh Generation d06ba

9 Example

The NAG logo is taken as an example of a geometry with holes. The boundary has been partitioned in
40 lines characteristic points; including 4 for the exterior boundary and 36 for the logo itself. All line
geometry specifications have been considered, see the description of lined, including 4 lines defined as
polygonal arc, 4 defined by fbnd and all the others are straight lines.

9.1 Program Text

function dO6ba_example
fprintf (’dO6ba example results\n\n’);

% Desciption of Nag Logo boundary in terms of arguments to dO6ba
nlines = 45;

line = zeros(4,nlines,nag_int_name) ;
line(1:4,1:nlines) = [15 1 2 1; 15 2 3 1; 15 3 4 1;
15 4 1 1; 4 6 5 -1; 10 10 6 O0;
10 14 10 2; 10 7 14 0; 4 8 7 0;
10 13 8 0; 10 13 9 3; 10 12 9 0;
4 11 12 0; 15 5 11 0; 15 26 15 4;
10 26 25 O0; 4 25 24 0; 4 24 23 0;
4 23 22 0; 10 21 22 ©6; 10 20 21 ©6;
10 19 20 ©6; 4 19 18 0; 518 17 0;
15 17 16 5; 4 16 15 0; 4 27 28 0;
7 28 30 8; 7 30 32 8; 7 32 34 8;
6 36 34 10; 6 38 36 12; 10 40 38 13;
10 42 40 13; 8 44 42 13; 4 44 45 0;
4 45 43 0; 4 43 41 0; 6 39 41 13;
10 37 39 13; 6 37 35 11; 6 35 33 9;
10 31 33 7; 10 29 31 7; 10 27 29 71';
coorch = zeros(2,nlines);
coorch(l,:) = ...
[9.5 33.0 9.5 -14.0
-4.0 -2.0 2.0 4.0 -2.0 -2.0 -4.0 -2.0 4.0 2.0
5.0 6.0 11.0 11.0 8.5 5.0 8.5 11.5 13.0 14.0 13.0 13.0
14.0 15.5 17.5 17.5 21.0 19.5 17.5 17.5 16.0 14.5 ...
17.0 16.0 20.0 14.0 19.3142 17.0 20.5 18.7249 19.5];
coorch(2,:) = ...
[-3.0 6.5 16.0 6.5
3.0 3.0 3.0 3.0 11.0 10.0 11.5 12.0 11.0 10.5
11.0 10.0 10.0 8.5 8.5 5.75 3.0 4.3335 3.0 3.75 4.75 10.5
2.5 2.5 0.0 1.0 2.5 2.5 5.0 4.0 5.5 5.5 ...
6.5 6.6573 9.25 9.25 11.0 12.0 11.5 11.5 12.0];
crus = zeros(2, 2);
crus(1,1:2)=[-8,-101/3;
crus(2,1:2) = [3,3];

rate = ones(nlines,1);
rate(1:4,1) = [0.95;1.05;0.95;1.051];
nlcomp = nag_int([4 10 12 19]);
lcomp = zeros(nlines,l,nag_int_name) ;
lcomp(l:nlines,1l) = [1 2 3 4
14 13 12 11 10 9 8 7 6 5 .
18 19 20 21 22 23 24 25 26 15 16 17 ...
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45];

nvmax = nag_int (5000) ;
nedmx = nag_int (1000) ;
itrace = nag_int(-1);

user = [23.5; 9.5; 9.5; 6.5];

% Generate boundary mesh

[nvb, coor, nedge, edge, user, ifail] =

d06ba (
coorch, line, @fbnd, crus, rate, nlcomp, lcomp, nvmax,
nedmx, itrace, 'user’, user);

i = nag_int (0);
k = nag_int (0);

Mark 25 d06ba.7

d06ba NAG Toolbox for MATLAB Manual

figl = figure;
hold on;
title(’Boundary Mesh’);

for seg = 1:4

for j = k+l:k+nlcomp(seq)
i =i+ line(1l,lcomp(j,1));

end

k = k + nlcomp(seq);
i =1 - nlcomp(seq);
segl = 1 - i0;

for j segl

= 1:
segx(j) = coor(1l,i0+3);
segy(j) = coor(2,i0+7);
end
segx (segl+l) = segx(1l);
segy(segl+l) = segy(1l);
plot(segx(l:segl+l),segy(l:segl+l));
end
axis equal tight;

% generate Delauney-Voronoi mesh using logo boundary
npropa = nag_int(1);

itrace = nag_int(0);

weight = [];

[nv, nelt, coor, conn, ifail] =
d06ab (

nvb, edge, coor, weight, npropa, itrace, ’nedge’,nedge) ;

% Plot mesh

fig2 = figure;

triplot(transpose(double(conn(:,1l:nelt))), coor(l,:), coor(2,:));
title(’'Delauney-Voronoi Mesh’);

axis equal tight;

fprintf (’'\nComplete mesh characteristics for Delauney-Voronoi mesh:\n’);
fprintf (/Number of vertices = %44d\n’,nv);
fprintf ('Number of elements = %4d\n’ ,nelt);

% generate 2D advancing front mesh on logo
[nv, nelt, coor, conn, ifail] =
dO06ac (

nvb, edge(:,l:nedge), coor, weight, itrace);

% Plot mesh

fig3 = figure;

triplot (transpose(double(conn(:,1l:nelt))), coor(l,:), coor(2,:));
title(’Advancing Front Mesh’);

axis equal tight;

fprintf (’\nComplete mesh characteristics for advancing front mesh:\n’);

fprintf ('Number of vertices = %4d\n’,nv) ;
fprintf ('Number of elements = %4d\n’,nelt);
function [result, user] = fbnd(i, x, y, user)

xa = user(1l);
xb = user(2);
x0 user (3);
y0 = user(4)

’

result = 0;
if (1 == 1)
% line 1,2,3, and 4: ellipse centred in (x0,y0) with
xa and xb as coefficients
result = ((x-x0)/xa)*2 + ((y-y0)/xb)"2 - 1;
elseif (i == 2)
% line 24, 27, 33 and 38 are a circle centred in (x0,yO0)
% with radius sqgrt(radius2)
x0 = 0.5;
.25;

o°

~
(@)

Il
[

d06ba.8 Mark 25

D06 — Mesh Generation

radius?2
result
elseif (i
x0 = 1;
y0 = 4;
radius?2
result
elseif (i
x0 = 8.
yO = 2.
radius?2
result
elseif (i
x0 = 8.
y0 = 4;
radius?2
result
elseif (i
x0 = 8.
y0O = 5.
result
elseif (i
x0 = 17
yO = 2.
result
elseif (i
x0 = 17
yO = 2.
result
elseif (i
x0 = 17
y0O = 5.
result
elseif (i
x0 = 17
y0O = 5.

result =

elseif (i
x0 = 17
yO = 5.
result

elseif (i
x0 = 16
yO = 5.
result

elseif (i
x0 = 17
yO = 9.
result

end

9.2 Program Results

== 11)

.0;
5;

= ((x-x0))"2 +

12)

7

5;

= ((x-x0)/1.5)"2 +

== 13)

25;

= ((x-x0)/3)"2 +

dO6ba example results

((y-y0)) 2 - 1;

= 20.3125;
= (x-x0)"2 + (y-y0)*2 - radius2;
== 3)
=9 + (11-y0)"2;
= (x-x0)"2 + (y-y0)"2 - radius2;
== 4)
5;
75;
= (x0-5)"2 + (11-y0)*2;
= (x-x0)"2 + (y-y0)"2 - radius2;
== 5)
5;
= 2.5°2 + (10-y0)"2;
= (x-x0)"2 + (y-y0)*2 - radius2;
== 6)
5;
75;
= ((x-x0)/3.5)"2 + ((y-y0)/2.75)"2 - 1;
== 17)
.5;
5;
= ((x-x0)/3.5)"2 + ((y-y0)/2.5)"*2 - 1;
== 8)
.5;
5;
= ((x-x0)/2)"2 + ((y-y0)/1.5)"2 - 1;
== 9)
.5;
5;
= ((x-x0)/1.5)"2 + ((y-y0)/0.5)"*2 - 1;
== 10)
.5;
5;
((x-x0)/3)"2 + ((y-y0)/1.5)"*2 - 1;

((y-y0)/1.1573) "2 - 1;

Analysis of the boundary created:
The boundary mesh contains
4 components comprising the boundary:

There are

The 1-st
The 2-nd
The 3-rd
The 4-th

component
component
component
component

contains
contains
contains
contains

332 vertices and

4 lines
10 lines
12 lines
19 lines

in
in
in
in

((y-y0)/2.75) "2 - 1;

anticlockwise
clockwise
anticlockwise
clockwise

Complete mesh characteristics for Delauney-Voronoi mesh:

Number of v
Number of e

Complete mesh characteristics for

Number of v
Number of e

Mark 25

ertices
lements

ertices
lements

= 904
= 1480

= 924
= 1520

advancing front mesh:

332 edges

orientation
orientation
orientation
orientation

d06ba

d06ba.9

d06ba

NAG Toolbox for MATLAB Manual

Boundary Mesh

-10 -5 0 5 10 15 20 25 30

Delauney-Voronoi Mesh

d06ba.10

-10 -5 0 3) 10 15 20 25 30

Mark 25

d06ba

D06 — Mesh Generation

Advancing Front Mesh

Q) 1>
<_ ‘<»<><><><><><><><><><><><>4>4>4’

<D
VA AV
ROORXS

TANYAVa5 XOVAVAR

<
AV SSATAvG

O Sk
SRR

RS
CNPSINNININNNNININD
NVANZ
NLY
)
X <

V&hy

XA

AN
N>

SN
RN

< raVAVAVAVAV A

ZAN

%

S
K Wv¢ A WAVAVAY

O\
KA

)
AV

71

./ 4‘?4}4}4’4}4}4’4’4’4 \/
b)4»uﬂ<hhﬁ¥<hv»0m«

ARSI «'A]
ﬂﬂ«rﬁn«»ﬂﬁiﬂ

IVAVAVAVI YA ZavaVAVAN
BT -
AV v

15

| A“"A ']

30

25

20

15

10

-10

d06ba. 1l (last)

Mark 25

	nag_mesh_2d_gen_boundary (d06ba)
	1 Purpose
	2 Syntax
	3 Description
	4 References
	George and Borouchaki (1998)

	5 Parameters
	5.1 Compulsory Input Parameters
	coorch
	lined
	fbnd
	FBND Input Parameters
	ii
	x
	y
	user

	FBND Output Parameters
	result
	user

	crus
	rate
	nlcomp
	lcomp
	nvmax
	nedmx
	itrace

	5.2 Optional Input Parameters
	nlines
	sdcrus
	ncomp
	user

	5.3 Output Parameters
	nvb
	coor
	nedge
	edge
	user
	ifail

	6 Error Indicators and Warnings
	ifail=1
	ifail=2
	ifail=3
	ifail=4
	ifail=-99
	ifail=-399
	ifail=-999

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Results

	NAG Toolbox for Matlab Manual, Mark 25
	Chapters of the Library
	A00 - library identification
	A00 Chapter Introduction

	A02 - complex arithmetic
	A02 Chapter Introduction

	C02 - zeros of polynomials
	C02 Chapter Introduction

	C05 - roots of one or more transcendental equations
	C05 Chapter Introduction

	C06 - summation of series
	C06 Chapter Introduction

	C09 - wavelet transforms
	C09 Chapter Introduction

	D01 - quadrature
	D01 Chapter Introduction

	D02 - ordinary differential equations
	D02 Chapter Introduction

	D03 - partial differential equations
	D03 Chapter Introduction

	D04 - numerical differentiation
	D04 Chapter Introduction

	D05 - integral equations
	D05 Chapter Introduction

	D06 - mesh generation
	D06 Chapter Introduction

	E01 - interpolation
	E01 Chapter Introduction

	E02 - curve and surface fitting
	E02 Chapter Introduction

	E04 - minimizing or maximizing a function
	E04 Chapter Introduction

	E05 - global optimization of a function
	E05 Chapter Introduction

	F - linear algebra
	F Chapter Introduction

	F01 - matrix operations, including inversion
	F01 Chapter Introduction

	F02 - eigenvalues and eigenvectors
	F02 Chapter Introduction

	F03 - determinants
	F03 Chapter Introduction

	F04 - simultaneous linear equations
	F04 Chapter Introduction

	F05 - orthogonalization
	F05 Chapter Introduction

	F07 - linear equations (lapack)
	F07 Chapter Introduction

	F08 - least squares and eigenvalue problems (lapack)
	F08 Chapter Introduction

	F11 - large scale linear systems
	F11 Chapter Introduction

	F12 - large scale eigenproblems
	F12 Chapter Introduction

	F16 - further linear algebra support routines
	F16 Chapter Introduction

	G01 - simple calculations on statistical data
	G01 Chapter Introduction

	G02 - correlation and regression analysis
	G02 Chapter Introduction

	G03 - multivariate methods
	G03 Chapter Introduction

	G04 - analysis of variance
	G04 Chapter Introduction

	G05 - random number generators
	G05 Chapter Introduction

	G07 - univariate estimation
	G07 Chapter Introduction

	G08 - nonparametric statistics
	G08 Chapter Introduction

	G10 - smoothing in statistics
	G10 Chapter Introduction

	G11 - contingency table analysis
	G11 Chapter Introduction

	G12 - survival analysis
	G12 Chapter Introduction

	G13 - time series analysis
	G13 Chapter Introduction

	H - operations research
	H Chapter Introduction

	M01 - sorting and searching
	M01 Chapter Introduction

	S - approximations of special functions
	S Chapter Introduction

	X01 - mathematical constants
	X01 Chapter Introduction

	X02 - machine constants
	X02 Chapter Introduction

	X03 - inner products
	X03 Chapter Introduction

	X04 - input/output utilities
	X04 Chapter Introduction

	X05 - date and time utilities
	X05 Chapter Introduction

	X06 - Multi-threading Utilities
	X06 Chapter Introduction

